

Design of Embedded Systems
Extensions for Multimedia

Processing

by Rafal Kapela

Local image descriptors – the idea
● Detect keypoints
● Produce descriptors around them

Local image descriptors – the idea
● Match descriptors to find objects -

homography

FREAK – Keypoint detector
● FREAK uses AGAST as a keypoint detector

Adaptive and Generic Accelerated Segment
Test

● Corner criteria:
– based on a Bersehnam's circle (different sizes)

– N connected pixels (of very similar luminance)
either brighter or darker than the nucleus

FREAK – Keypoint detector
● AGAST

– Builds a decision tree optimized for processing
costs

– Uses adaptive switching between
● a tree for homogeneous areas
● a tree for textured regions

FREAK – Motivation
● Descriptor is built based on the topology of human

retina:
– extracts information using DoGs (diffrent sizes);
– the spatial distribution of ganglion cells reduces

expotentially with the radial distance from the
foveola;

– the size of the receptive field increases with radial
distance from the foveola;

http://www.ivpe.com/papers/freak.pdf

FREAK – Sampling pattern
● The architecture of the descriptor was chosen

experimentally:
– sizes of the Gussian kernels change with respect

to the log-polar retinal pattern;
– neighboring receptive fields overlap eachother;

A>B, B>C ... A>C

T (Pa)={1 if (I (Pa
r 1)−I (Pa

r 2))>0
0otherwise

F= ∑
0⩽a<N

2aT (Pa)

FREAK – which pairs?
● The procedure to choose pairs:

– take large number of keypoints (50k in the paper);
– create D matrix:

● each row represents to a keypoint;
● each column represents a pair (43 fields – 1k

columns)
– calculate a mean of each column (0.5 leads to the

highest variance in binary distribution);
– sort the columns with respect to their variance;
– take the best column (the one of the highest

variance);
– check if the correlation between the chosen

column and the ones already included to the
descriptor;

– low correlation – include the column; high
correlation – do not include the column.

FREAK – saccadic search
● Humans do not look at a scene with fixed steadiness.
● Human's eye does saccades (discontinuous

individual movements).
● The movements are very small, thus receptive

regions located mainly around the foveola are
stimulated (the ones with the highest density).

● To mimic this we can propose cascades of pairs of
Gaussians (e.g., 1st cascade is composed of pairs
that are close to the nucleus).

● More than 90% of candidates are discarded with the
first 16 bytes of FREAK descriptor.

FREAK – orientation

M – number of pairs in G
P – 2D vector indicating the
centre of the Gaussian
I – intensity function

O=
1
M

∑
Po∈G

(I (Po
r 1)−I (Po

r 2))
Po

r1−Po
r 2

‖Po
r1−Po

r 2‖

FREAK – useful links

FREAK, ORB (oriented BRIEF), BRISK and FAST are
implemented in openCV (since 2.4.2)

http://docs.opencv.org/modules/features2d/doc/feature_detection_and_description.html

DEMO C++ code:
http://fossies.org/dox/OpenCV-2.4.3/freak__demo_8cpp_source.html

FREAK the article
infoscience.epfl.ch/record/175537/files/2069.pdf

 FREAK in MATLAB (using openCV)
http://dovgalecs.com/blog/freak-descriptor-in-matlab/

FREAK – hardware

1. Project requirements
 and assumptions
2. Linux requirements
3. Hardware requirements

Project overview
the ugly truth

1. HW/SW co-design is hard - plenty of things to know:
- software: OS'es specyfics (kernel & rootfs), driver
specyfics, application specyfics;
- hardware: VHDL/Verilog knowledge, hard to debug,
some knowledge of the platform you design for is needed

2. It's not always reasonable.
3. Hard to get any good support.

4. Once it's done it rocks - there
is Something to show
5. It shows you're not just another
programmer
5. This knowledge is well paid!

Project overview
knowledge coverage - full project

1. Software - Xilinx
- XPS (professional level)
- Xilinx IP cores (AXI, FIFO)

2. Software - Linux
- device drivers
- kernel porting, rootfs design

3. Software - application
- IO operations
- some libs (OpenCV, gstreamer)

3. Hardware
- Xilinx IP cores (AXI, FIFO)
- VHDL (quite advanced)
- simulaiton - Modelsim

Project requirements
and assumptions

Project requirements

1. ARM processor and hardware accelerator will work
simultaneously and simlessly
 - data can be passed back and forth between sw/hw
 - hardware can work simultaneuosly to the software
 - software can be multithreaded

2. ARM processor will run full OS
3. OS will implement hardware driver
4. Driver is supposed to be loadable kernel module
5. Mimimal FPGA area shall be taken for communication
channel
6. HW/SW will communicate through the additional signals
(control dataflow)

Project - data exchange concepts

1. Communication through the processor registers:
- processor registers are available from both ARM and
FPGA
- FIFO queues are implemented in FPGA's block RAMs.
- processor has to handle almost whole communication
(i.e., fill and empty regs)
- ARM is 32-bit (4B) so are
the regs -> FIFO width

Project - concepts

2. Communication through the processor registers and
mapped memory buffers:

- processor registers are available from both ARM and
FPGA
- FIFO queues are implemented in FPGA's block RAMs.
- RAM memory reserved to double FIFO in FPGA
- processor doesn't have to
handle the whole
communication since it can
use DMA now
- ARM is 32-bit (4B) so are
the regs -> FIFO width

Project - concepts

3. Coprocessor as the processor's periferial module:
- FIFO queues are implemented in FPGA's block RAMs.
- communication between the cores is done through the
AXI (AMBA (Advanced Microcontroller Bus Architecture)
eXternal Interface) bus
- ARM is 32-bit (4B) so are
the regs -> FIFO width

SOFTWARE

Project - software part (overview)

1. Zynq 7020 has dual core Cortex A9 processor (space for
multithreaded applications)
2. Open libs like OpenCV and gstreamer could be used for
handling the video frame extraction and preprocessing.
3. FPGA hardware can be used to accelerate some parts of
this process.

Project - software part (application)

1. main.cpp handles parallelism of the application, gstreamer
calls and different operation modes
2. opencv_alg.cpp handles all the stuff related to the actual
algorithm and communication with the hardware accelarator

see main.cpp
opencv_alg.cpp

Project - software part (driver)

1. Linux as an OS (open, scalable, secure, etc.)
2. Device configuration taken from device tree.
3. Character device
4. Accessible through the virtual file in /dev/
5. Data transfer through the RW commands to this file
6. State monitoring through the ioctl calls

see axi_coprocessor_interface.c
axi_coprocessor_interface.h

HARDWARE

Project - hardware part (overview)

1. Project designed in XPS (Xilinx Platform Studio)
2. AXI and FIFO are Xilinx IP cores
3. User logic is instantiated in the AXI interface on the FPGA
end of the AXI bus.
4. AXI bus is “memory mapped” so it is visible as set of
adresses for the ARM processor
5. OS kernel needs to see it as well
so we need to design a valid DTS

Project - AMBA
based on UG761 by Xilinx

There are three types of AXI4 interfaces:

• AXI4—for high-performance memory-mapped
requirements.

• AXI4-Lite—for simple, low-throughput memory-mapped
communication (for example, to and from control and status
registers).

• AXI4-Stream—for high-speed streaming data.

Project - AMBA
based on UG761 by Xilinx

Productivity

By standardizing on the AXI in terface,
developers need to learn only a single protocol

for IP.

Project - AMBA
based on UG761 by Xilinx

Flexibility

Providing the right protocol for the application:
• AXI4 is for memory mapped interfaces and allows burst

of up to 256 data transfer cycles with just a single address
phase.

• AXI4-Lite is a light-weight, single transaction memory
mapped interface. It has a small logic footprint and is a
simple interface to work with both in design and usage.
• AXI4-Stream removes the requirement for an address

phase altogether and allows unlimited data burst size.
AXI4-Stream interfaces and transfers do not have address
phases and are therefore not considered to be memory-

mapped.

Project - AMBA
based on UG761 by Xilinx

Availability

By moving to an industry-standard, you have
access not only to the Xilinx IP catalog, but also

to a worldwide community of ARM Partners.

• Many IP providers support the AXI protocol.
• A robust collection of third-party AXI tool

vendors is available

Project - XPS (example)
based on UG873 by Xilinx

Exemplary IP is AXI4-Lite compliant Slave IP. It includes a 28
bit counter. 4 MSB bits of the counter are driving the 4 output
ports of the peripheral IP.

Project - XPS (example)
based on UG873 by Xilinx

Configuration register:

Project - XPS (example)
based on UG873 by Xilinx

The system covers the following connections:
• Peripheral IP connected to PS General Purpose master port 0
(M_AXI_GP0). This connection is used by the PS CPU to configure
Peripheral IP register configurations.
• Four output ports of Peripheral IP connected to DS15, DS16, DS17,
and DS18 on-board LEDs.

Project - XPS (real case)

Port assignment:

Project - XPS
HDL - IP core

Modelsim

Project - summary
calculation times

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

