
Linux device and driver model Introduction to the I2C subsystem

Linux Kernel
Peripheral Devices for Embedded Systems

Rafal Kapela

June 26, 2016

Rafal Kapela — Linux Kernel 1/60



Linux device and driver model Introduction to the I2C subsystem

Outline

1 Linux device and driver model

2 Introduction to the I2C subsystem

Rafal Kapela — Linux Kernel 2/60



Linux device and driver model Introduction to the I2C subsystem

Outline

1 Linux device and driver model

2 Introduction to the I2C subsystem

Rafal Kapela — Linux Kernel 3/60



Linux device and driver model Introduction to the I2C subsystem

The need for a device model?

The Linux kernel runs on a wide range of architectures
and hardware platforms, and therefore needs to
maximize the reusability of code between platforms.

For example, we want the same USB device driver to be
usable on a x86 PC, or an ARM platform, even though
the USB controllers used on those platforms are different.

This requires a clean organization of the code, with the
device drivers separated from the controller drivers, the
hardware description separated from the drivers
themselves, etc.

This is what the Linux kernel Device Model allows, in
addition to other advantages covered in this section.

Rafal Kapela — Linux Kernel 4/60



Linux device and driver model Introduction to the I2C subsystem

Kernel and Device Drivers

In Linux, a driver is always
interfacing with:

a framework that allows
the driver to expose the
hardware features in a
generic way.

a bus infrastructure,
part of the device model,
to detect/communicate
with the hardware.

This section focuses on the
device model, while kernel
frameworks are covered later in
this training.

Rafal Kapela — Linux Kernel 5/60



Linux device and driver model Introduction to the I2C subsystem

Device Model data structures

The device model is organized around three main data
structures:

The bus type structure, which represent one type of bus
(USB, PCI, I2C, etc.)
The device driver structure, which represents one driver
capable of handling certain devices on a certain bus.
The device structure, which represents one device
connected to a bus

The kernel uses inheritance to create more specialized
versions of device driver and device for each bus
subsystem.

We will then explore the device model.

Rafal Kapela — Linux Kernel 6/60



Linux device and driver model Introduction to the I2C subsystem

Bus Drivers

The first component of the device model is the bus driver
One bus driver for each type of bus: USB, PCI, SPI,
MMC, I2C, etc.

It is responsible for
Registering the bus type (bus type)
Allowing the registration of adapter drivers (USB
controllers, I2C adapters, etc.), able of detecting the
connected devices, and providing a communication
mechanism with the devices
Allowing the registration of device drivers (USB devices,
I2C devices, PCI devices, etc.), managing the devices
Matching the device drivers against the devices detected
by the adapter drivers.
Provides an API to both adapter drivers and device
drivers
Defining driver and device specific structures

Rafal Kapela — Linux Kernel 7/60



Linux device and driver model Introduction to the I2C subsystem

Outline

1 Linux device and driver model
Example of the USB bus
Platform drivers

Rafal Kapela — Linux Kernel 8/60



Linux device and driver model Introduction to the I2C subsystem

Example: USB Bus 1/2

Rafal Kapela — Linux Kernel 9/60



Linux device and driver model Introduction to the I2C subsystem

Example: USB Bus 2/2

Core infrastructure (bus driver)

drivers/usb/core
bus type is defined in drivers/usb/core/driver.c and
registered in drivers/usb/core/usb.c

Adapter drivers

drivers/usb/host
For EHCI, UHCI, OHCI, XHCI, and their
implementations on various systems (Atmel, IXP, Xilinx,
OMAP, Samsung, PXA, etc.)

Device drivers

Everywhere in the kernel tree, classified by their type

Rafal Kapela — Linux Kernel 10/60



Linux device and driver model Introduction to the I2C subsystem

Example of Device Driver

To illustrate how drivers are implemented to work with
the device model, we will study the source code of a
driver for a USB network card

It is USB device, so it has to be a USB device driver
It is a network device, so it has to be a network device
Most drivers rely on a bus infrastructure (here, USB)
and register themselves in a framework (here, network)

We will only look at the device driver side, and not the
adapter driver side

The driver we will look at is drivers/net/usb/rtl8150.c

Rafal Kapela — Linux Kernel 11/60



Linux device and driver model Introduction to the I2C subsystem

Device Identifiers

Defines the set of devices that this driver can manage, so
that the USB core knows for which devices this driver
should be used
The MODULE DEVICE TABLE macro allows depmod to
extract at compile time the relation between device
identifiers and drivers, so that drivers can be loaded
automatically by udev. See /lib/modules/$(uname
-r)/modules.alias,usbmap

static struct usb_device_id rtl8150_table[] = {

{USB_DEVICE(VENDOR_ID_REALTEK,

PRODUCT_ID_RTL8150)}, ...

};

MODULE_DEVICE_TABLE(usb, rtl8150_table);

Rafal Kapela — Linux Kernel 12/60



Linux device and driver model Introduction to the I2C subsystem

Instantiation of usb driver

usb driver is a structure defined by the USB core. Each
USB device driver must instantiate it, and register itself
to the USB core using this structure
This structure inherits from driver, which is defined by the
device model.

static struct usb_driver rtl8150_driver = {

.name = "rtl8150",

.probe = rtl8150_probe,

.disconnect = rtl8150_disconnect,

.id_table = rtl8150_table,

.suspend = rtl8150_suspend,

.resume = rtl8150_resume

};

Rafal Kapela — Linux Kernel 13/60



Linux device and driver model Introduction to the I2C subsystem

Driver (Un)Registration

When the driver is loaded or unloaded, it must register or
unregister itself from the USB core
Done using usb register and usb deregister, provided by
the USB core.

static int __init usb_rtl8150_init(void) {

return usb_register(&rtl8150_driver);

}

static void __exit usb_rtl8150_exit(void) {

usb_deregister(&rtl8150_driver);

}

module_init(usb_rtl8150_init);

module_exit(usb_rtl8150_exit);

Note: this code has now been replaced by a shorter
module usb driver macro call.

Rafal Kapela — Linux Kernel 14/60



Linux device and driver model Introduction to the I2C subsystem

At Initialization

The USB adapter driver that corresponds to the USB
controller of the system registers itself to the USB core

The rtl8150 USB device driver registers itself to the USB
core

The USB core now knows the association between the
vendor/product IDs of rtl8150 and the usb driver
structure of this driver

Rafal Kapela — Linux Kernel 15/60



Linux device and driver model Introduction to the I2C subsystem

When a Device is Detected

Rafal Kapela — Linux Kernel 16/60



Linux device and driver model Introduction to the I2C subsystem

Probe Method

The probe() method receives as argument a structure
describing the device, usually specialized by the bus
infrastructure (pci dev, usb interface, etc.)

This function is responsible for

Initializing the device, mapping I/O memory, registering
the interrupt handlers. The bus infrastructure provides
methods to get the addresses, interrupt numbers and
other device-specific information.
Registering the device to the proper kernel framework,
for example the network infrastructure.

Rafal Kapela — Linux Kernel 17/60



Linux device and driver model Introduction to the I2C subsystem

Probe Method Example

static int rtl8150_probe(struct usb_interface *intf,

const struct usb_device_id *id)

{

rtl8150_t *dev;

struct net_device *netdev;

netdev = alloc_etherdev(sizeof(rtl8150_t));

[...]

dev = netdev_priv(netdev);

tasklet_init(&dev->tl, rx_fixup, (unsigned long)dev);

spin_lock_init(&dev->rx_pool_lock);

[...]

netdev->netdev_ops = &rtl8150_netdev_ops;

alloc_all_urbs(dev);

[...]

usb_set_intfdata(intf, dev);

SET_NETDEV_DEV(netdev, &intf->dev);

register_netdev(netdev);

return 0;

}

Rafal Kapela — Linux Kernel 18/60



Linux device and driver model Introduction to the I2C subsystem

The Model is Recursive

Rafal Kapela — Linux Kernel 19/60



Linux device and driver model Introduction to the I2C subsystem

Outline

1 Linux device and driver model
Example of the USB bus
Platform drivers

Rafal Kapela — Linux Kernel 20/60



Linux device and driver model Introduction to the I2C subsystem

Non-discoverable busses

On embedded systems, devices are often not connected
through a bus allowing enumeration, hotplugging, and
providing unique identifiers for devices.

For example, the devices on I2C busses or SPI busses, or
the devices directly part of the system-on-chip.

However, we still want all of those devices to be part of
the device model.

Such devices, instead of being dynamically detected, must
be statically described in either:

The kernel source code
The Device Tree, a hardware description file used on
some architectures.

Rafal Kapela — Linux Kernel 21/60



Linux device and driver model Introduction to the I2C subsystem

Platform devices

Amongst the non-discoverable devices, a huge family are
the devices that are directly part of a system-on-chip:
UART controllers, Ethernet controllers, SPI or I2C
controllers, graphic or audio devices, etc.

In the Linux kernel, a special bus, called the platform
bus has been created to handle such devices.

It supports platform drivers that handle platform
devices.

It works like any other bus (USB, PCI), except that
devices are enumerated statically instead of being
discovered dynamically.

Rafal Kapela — Linux Kernel 22/60



Linux device and driver model Introduction to the I2C subsystem

Implementation

The driver implements a platform driver structure
(example taken from drivers/serial/imx.c)

static struct platform_driver serial_imx_driver = {

.probe = serial_imx_probe,

.remove = serial_imx_remove,

.driver = { .name = "imx-uart",

.owner = THIS_MODULE,

},

};

And registers its driver to the platform driver
infrastructure

static int __init imx_serial_init(void) {

ret = platform_driver_register(&serial_imx_driver);

}

static void __exit imx_serial_cleanup(void) {

platform_driver_unregister(&serial_imx_driver);

}

Rafal Kapela — Linux Kernel 23/60



Linux device and driver model Introduction to the I2C subsystem

Platform Device Instantiation

As platform devices cannot be detected dynamically, they
are defined statically

By direct instantiation of platform device structures, as
done on some ARM platforms. Definition done in the
board-specific or SoC specific code.
By using a device tree, as done on Power PC (and on
some ARM platforms) from which platform device
structures are created

Example on ARM, where the instantiation is done in
arch/arm/mach-imx/mx1ads.c

static struct platform_device imx_uart1_device = {

.name = "imx-uart",

.id = 0, .num_resources = ARRAY_SIZE(imx_uart1_resources),

.resource = imx_uart1_resources,

.dev = { .platform_data = &uart_pdata, } };

Rafal Kapela — Linux Kernel 24/60



Linux device and driver model Introduction to the I2C subsystem

Platform device instantiation

The device is part of a list

static struct platform_device *devices[] __initdata = {

&cs89x0_device,

&imx_uart1_device,

&imx_uart2_device, };

And the list of devices is added to the system during
board initialization

static void __init mx1ads_init(void) {

[...]

platform_add_devices(devices, ARRAY_SIZE(devices));

}

MACHINE_START(MX1ADS, "Freescale MX1ADS")

[...]

.init_machine = mx1ads_init,

MACHINE_END

Rafal Kapela — Linux Kernel 25/60



Linux device and driver model Introduction to the I2C subsystem

The Resource Mechanism

Each device managed by a particular driver typically uses
different hardware resources: addresses for the I/O
registers, DMA channels, IRQ lines, etc.

Such information can be represented using resource, and
an array of resource is associated to a platform device

Allows a driver to be instantiated for multiple devices
functioning similarly, but with different addresses, IRQs,
etc.

Rafal Kapela — Linux Kernel 26/60



Linux device and driver model Introduction to the I2C subsystem

Declaring resources

static struct resource imx_uart1_resources[] = {

[0] = {

.start = 0x00206000,

.end = 0x002060FF,

.flags = IORESOURCE_MEM,

},

[1] = {

.start = (UART1_MINT_RX),

.end = (UART1_MINT_RX),

.flags = IORESOURCE_IRQ,

},

};

Rafal Kapela — Linux Kernel 27/60



Linux device and driver model Introduction to the I2C subsystem

Using Resources

When a platform device is added to the system using
platform add device, the probe() method of the platform
driver gets called

This method is responsible for initializing the hardware,
registering the device to the proper framework (in our
case, the serial driver framework)

The platform driver has access to the I/O resources:

res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

base = ioremap(res->start, PAGE_SIZE);

sport->rxirq = platform_get_irq(pdev, 0);

Rafal Kapela — Linux Kernel 28/60



Linux device and driver model Introduction to the I2C subsystem

platform data Mechanism

In addition to the well-defined resources, many drivers
require driver-specific information for each platform device

Such information can be passed using the platform data
field of device (from which platform device inherits)

As it is a void * pointer, it can be used to pass any type
of information.

Typically, each driver defines a structure to pass
information through platform data

Rafal Kapela — Linux Kernel 29/60



Linux device and driver model Introduction to the I2C subsystem

platform data example 1/2

The i.MX serial port driver defines the following structure
to be passed through platform data

struct imxuart_platform_data {

int (*init)(struct platform_device *pdev);

void (*exit)(struct platform_device *pdev);

unsigned int flags;

void (*irda_enable)(int enable);

unsigned int irda_inv_rx:1;

unsigned int irda_inv_tx:1;

unsigned short transceiver_delay;

};

The MX1ADS board code instantiates such a structure

static struct imxuart_platform_data uart1_pdata = {

.flags = IMXUART_HAVE_RTSCTS,

};

Rafal Kapela — Linux Kernel 30/60



Linux device and driver model Introduction to the I2C subsystem

platform data Example 2/2

The uart pdata structure is associated to the
platform device structure in the MX1ADS board file (the
real code is slightly more complicated)

struct platform_device mx1ads_uart1 = {

.name = "imx-uart",

.dev {

.platform_data = &uart1_pdata,

},

.resource = imx_uart1_resources,

[...]

};

The driver can access the platform data:

static int serial_imx_probe(struct platform_device *pdev) {

struct imxuart_platform_data *pdata;

pdata = pdev->dev.platform_data;

if (pdata && (pdata->flags & IMXUART_HAVE_RTSCTS))

sport->have_rtscts = 1;

Rafal Kapela — Linux Kernel 31/60



Linux device and driver model Introduction to the I2C subsystem

Device Tree

On many embedded architectures, manual instantiation of
platform devices was considered to be too verbose and
not easily maintainable.

Such architectures are moving, or have moved, to use the
Device Tree.

It is a tree of nodes that models the hierarchy of devices
in the system, from the devices inside the processor to the
devices on the board.

Each node can have a number of properties describing
various properties of the devices: addresses, interrupts,
clocks, etc.

At boot time, the kernel is given a compiled version, the
Device Tree Blob, which is parsed to instantiate all the
devices described in the DT.

Rafal Kapela — Linux Kernel 32/60



Linux device and driver model Introduction to the I2C subsystem

Device Tree example

uart0: serial@44e09000 {

compatible = "ti,omap3-uart";

ti,hwmods = "uart1";

clock-frequency = <48000000>;

reg = <0x44e09000 0x2000>;

interrupts = <72>;

status = "disabled";

};

serial@44e09000 is the node name

uart0 is an alias, that can be referred to in other parts of
the DT as &uart0

other lines are properties. Their values are usually
strings, list of integers, or references to other nodes.

Rafal Kapela — Linux Kernel 33/60



Linux device and driver model Introduction to the I2C subsystem

Device Tree inheritance (1/2)

Each particular hardware platform has its own device tree.

However, several hardware platforms use the same
processor, and often various processors in the same family
share a number of similarities.

To allow this, a device tree file can include another one.
The trees described by the including file overlays the tree
described by the included file.

Rafal Kapela — Linux Kernel 34/60



Linux device and driver model Introduction to the I2C subsystem

Device Tree inheritance (2/2)

Rafal Kapela — Linux Kernel 35/60



Linux device and driver model Introduction to the I2C subsystem

DT: compatible string

With the device tree, a device is bound with the
corresponding driver using the compatible string.

The of match table field of device driver lists the
compatible strings supported by the driver.

#if defined(CONFIG_OF)

static const struct of_device_id omap_serial_of_match[] = {

{ .compatible = "ti,omap2-uart" },

{ .compatible = "ti,omap3-uart" },

{ .compatible = "ti,omap4-uart" },

{},

};

MODULE_DEVICE_TABLE(of, omap_serial_of_match);

#endif

static struct platform_driver serial_omap_driver = {

.probe = serial_omap_probe,

.remove = serial_omap_remove,

.driver = {

.name = DRIVER_NAME,

.pm = &serial_omap_dev_pm_ops,

.of_match_table = of_match_ptr(omap_serial_of_match),

},

};

Rafal Kapela — Linux Kernel 36/60



Linux device and driver model Introduction to the I2C subsystem

Device Tree Resources

The drivers will use the same mechanism that we saw
previously to retrieve basic information: interrupts
numbers, physical addresses, etc.

The available resources list will be built up by the kernel
at boot time from the device tree, so that you don’t need
to make any unnecessary lookups to the DT when loading
your driver.

Any additional information will be specific to a driver or
the class it belongs to, defining the bindings

Rafal Kapela — Linux Kernel 37/60



Linux device and driver model Introduction to the I2C subsystem

Device Tree bindings

The compatible string and the associated properties
define what is called a device tree binding.

Device tree bindings are all documented in
devicetree/bindings.

Since the Device Tree is normally part of the kernel ABI,
the bindings must remain compatible over-time.

A new kernel must be capable of using an old Device
Tree.

A Device Tree binding should contain only a description
of the hardware and not configuration.

An interrupt number can be part of the Device Tree as it
describes the hardware.
But not whether DMA should be used for a device or
not.

Rafal Kapela — Linux Kernel 38/60



Linux device and driver model Introduction to the I2C subsystem

sysfs

The bus, device, drivers, etc. structures are internal to
the kernel

The sysfs virtual filesystem offers a mechanism to export
such information to userspace

Used for example by udev to provide automatic module
loading, firmware loading, device file creation, etc.

sysfs is usually mounted in /sys

/sys/bus/ contains the list of buses
/sys/devices/ contains the list of devices
/sys/class enumerates devices by class (net, input,
block...), whatever the bus they are connected to. Very
useful!

Take your time to explore /sys on your workstation.

Rafal Kapela — Linux Kernel 39/60



Linux device and driver model Introduction to the I2C subsystem

Outline

1 Linux device and driver model

2 Introduction to the I2C subsystem

Rafal Kapela — Linux Kernel 40/60



Linux device and driver model Introduction to the I2C subsystem

What is I2C?

A very commonly used low-speed bus to connect
on-board devices to the processor.

Uses only two wires: SDA for the data, SCL for the clock.

It is a master/slave bus: only the master can initiate
transactions, and slaves can only reply to transactions
initiated by masters.

In a Linux system, the I2C controller embedded in the
processor is typically the master, controlling the bus.

Each slave device is identified by a unique I2C address.
Each transaction initiated by the master contains this
address, which allows the relevant slave to recognize that
it should reply to this particular transaction.

Rafal Kapela — Linux Kernel 41/60



Linux device and driver model Introduction to the I2C subsystem

An I2C bus example

Rafal Kapela — Linux Kernel 42/60



Linux device and driver model Introduction to the I2C subsystem

The I2C subsystem

Like all bus subsystems, the I2C subsystem is responsible
for:

Providing an API to implement I2C controller drivers
Providing an API to implement I2C device drivers, in
kernel space
Providing an API to implement I2C device drivers, in
user space

The core of the I2C subsystem is located in drivers/i2c.

The I2C controller drivers are located in
drivers/i2c/busses.

The I2C device drivers are located throughout drivers/,
depending on the type of device (ex: drivers/input for
input devices).

Rafal Kapela — Linux Kernel 43/60



Linux device and driver model Introduction to the I2C subsystem

Registering an I2C device driver

Like all bus subsystems, the I2C subsystem defines a
i2c driver that inherits from device driver, and which must
be instantiated and registered by each I2C device driver.

As usual, this structure points to the -¿probe() and
remove() functions.
It also contains an id table field that must point to a list
of device IDs (which is a list of tuples containing a string
and some private driver data). It is used for non-DT
based probing of I2C devices.

The i2c add driver and i2c del driver functions are used
to register/unregister the driver.

If the driver doesn’t do anything else in its init()/exit()
functions, it is advised to use the module i2c driver macro
instead.

Rafal Kapela — Linux Kernel 44/60



Linux device and driver model Introduction to the I2C subsystem

Registering an I2C device driver

static const struct i2c_device_id <driver>_id[] = {

{ "<device-name>", 0 },

{ }

};

MODULE_DEVICE_TABLE(i2c, <driver>_id);

#ifdef CONFIG_OF

static const struct of_device_id <driver>_dt_ids[] = {

{ .compatible = "<vendor>,<device-name>", },

{ }

};

MODULE_DEVICE_TABLE(of, <driver>_dt_ids);

#endif

static struct i2c_driver <driver>_driver = {

.probe = <driver>_probe,

.remove = <driver>_remove,

.id_table = <driver>_id,

.driver = {

.name = "<driver-name>",

.owner = THIS_MODULE,

.of_match_table = of_match_ptr(<driver>_dt_ids),

},

};

module_i2c_driver(<driver>_driver);

Rafal Kapela — Linux Kernel 45/60



Linux device and driver model Introduction to the I2C subsystem

Registering an I2C dev.: non-DT

On non-DT platforms, the i2c board info structure allows
to describe how an I2C device is connected to a board.

Such structures are normally defined with the
I2C BOARD INFO helper macro.

Takes as argument the device name and the slave
address of the device on the bus.

An array of such structures is registed on a per-bus basis
using i2c register board info, when the platform is
initialized.

Rafal Kapela — Linux Kernel 46/60



Linux device and driver model Introduction to the I2C subsystem

Registering an I2C dev.: non-DT

static struct i2c_board_info <board>_i2c_devices[] __initdata = {

{

I2C_BOARD_INFO("cs42l51", 0x4a),

},

};

void board_init(void)

{

/*

* Here should be the registration of all devices, including

* the I2C controller device.

*/

i2c_register_board_info(0, <board>_i2c_devices,

ARRAY_SIZE(<board>_i2c_devices));

/* More devices registered here */

}

Rafal Kapela — Linux Kernel 47/60



Linux device and driver model Introduction to the I2C subsystem

Registering an I2C dev.: the DT

In the Device Tree, the I2C controller device is typically
defined in the .dtsi file that describes the processor.

Normally defined with status = ”disabled”.

At the board/platform level:

the I2C controller device is enabled (status = ”okay”)
the I2C bus frequency is defined, using the
clock-frequency property.
the I2C devices on the bus are described as children of
the I2C controller node, where the reg property gives the
I2C slave address on the bus.

Rafal Kapela — Linux Kernel 48/60



Linux device and driver model Introduction to the I2C subsystem

Registering an I2C dev.: DT

Definition of the I2C controller, .dtsi file
i2c@7000c000 {

compatible = "nvidia,tegra20-i2c";

reg = <0x7000c000 0x100>;

interrupts = <GIC_SPI 38 IRQ_TYPE_LEVEL_HIGH>;

#address-cells = <1>;

#size-cells = <0>;

clocks = <&tegra_car TEGRA20_CLK_I2C1>,

<&tegra_car TEGRA20_CLK_PLL_P_OUT3>;

clock-names = "div-clk", "fast-clk";

status = "disabled";

};

Rafal Kapela — Linux Kernel 49/60



Linux device and driver model Introduction to the I2C subsystem

Registering an I2C dev.: DT

Definition of the I2C device, .dts file
i2c@7000c000 {

status = "okay";

clock-frequency = <400000>;

alc5632: alc5632@1e {

compatible = "realtek,alc5632";

reg = <0x1e>;

gpio-controller;

#gpio-cells = <2>;

};

};

Rafal Kapela — Linux Kernel 50/60



Linux device and driver model Introduction to the I2C subsystem

probe() and remove()

The probe() function is responsible for initializing the
device and registering it in the appropriate kernel
framework. It receives as argument:

A i2c client pointer, which represents the I2C device
itself. This structure inherits from device.
A i2c device id pointer, which points to the I2C device
ID entry that matched the device that is being probed.

The remove() function is responsible for unregistering the
device from the kernel framework and shut it down. It
receives as argument:

The same i2c client pointer that was passed as argument
to probe()

Rafal Kapela — Linux Kernel 51/60



Linux device and driver model Introduction to the I2C subsystem

Probe/remove example

static int <driver>_probe(struct i2c_client *client,

const struct i2c_device_id *id)

{

/* initialize device */

/* register to a kernel framework */

i2c_set_clientdata(client, <private data>);

return 0;

}

static int <driver>_remove(struct i2c_client *client)

{

<private data> = i2c_get_clientdata(client);

/* unregister device from kernel framework */

/* shut down the device */

return 0;

}

Rafal Kapela — Linux Kernel 52/60



Linux device and driver model Introduction to the I2C subsystem

Communicating with the I2C dev.

The most basic API to communicate with the I2C device
provides functions to either send or receive data:

int i2c master send(struct i2c client *client, const char
*buf, int count);
Sends the contents of buf to the client.

int i2c master recv(struct i2c client *client, char *buf, int
count);
Receives count bytes from the client, and store them into
buf.

Rafal Kapela — Linux Kernel 53/60



Linux device and driver model Introduction to the I2C subsystem

Communicating with the I2C dev.

The message transfer API allows to describe transfers that
consists of several messages, with each message being a
transaction in one direction:

int i2c transfer(struct i2c adapter *adap, struct i2c msg
*msg, int num);

The i2c adapter pointer can be found by using
client-adapter

The i2c msg structure defines the length, location, and
direction of the message.

Rafal Kapela — Linux Kernel 54/60



Linux device and driver model Introduction to the I2C subsystem

I2C: message transfer example

struct i2c_msg msg[2];

int error;

u8 start_reg;

u8 buf[10];

msg[0].addr = client->addr;

msg[0].flags = 0;

msg[0].len = 1;

msg[0].buf = &start_reg;

start_reg = 0x10;

msg[1].addr = client->addr;

msg[1].flags = I2C_M_RD;

msg[1].len = sizeof(buf);

msg[1].buf = buf;

error = i2c_transfer(client->adapter, msg, 2);

Rafal Kapela — Linux Kernel 55/60



Linux device and driver model Introduction to the I2C subsystem

SMBus calls

SMBus is a subset of the I2C protocol.

It defines a standard set of transactions, for example to
read or write a register into a device.

Linux provides SMBus functions that should be used
when possible instead of the raw API, if the I2C device
uses this standard type of transactions.

Example: the i2c smbus read byte data function allows to
read one byte of data from a device register.

It does the following operations: S Addr Wr [A] Comm
[A] S Addr Rd [A] [Data] NA P
Which means it first writes a one byte data command
(Comm), and then reads back one byte of data ([Data]).

See i2c/smbus-protocol for details.

Rafal Kapela — Linux Kernel 56/60



Linux device and driver model Introduction to the I2C subsystem

List of SMBus functions

Read/write one byte
s32 i2c smbus read byte(const struct i2c client *client);
s32 i2c smbus write byte(const struct i2c client *client, u8 value);

Write a command byte, and read or write one byte
s32 i2c smbus read byte data(const struct i2c client *client, u8 command);
s32 i2c smbus write byte data(const struct i2c client *client, u8 command, u8 value);

Write a command byte, and read or write one word
s32 i2c smbus read word data(const struct i2c client *client, u8 command);
s32 i2c smbus write word data(const struct i2c client *client, u8 command, u16 value);

Write a command byte, and read or write a block of data
(max 32 bytes)

s32 i2c smbus read block data(const struct i2c client *client, u8 command, u8 *values);
s32 i2c smbus write block data(const struct i2c client *client, u8 command, u8 length, const u8
*values);

Write a command byte, and read or write a block of data
(no limit)

s32 i2c smbus read i2c block data(const struct i2c client *client, u8 command, u8 length, u8
*values);
s32 i2c smbus write i2c block data(const struct i2c client *client, u8 command, u8 length, const
u8 *values);

Rafal Kapela — Linux Kernel 57/60



Linux device and driver model Introduction to the I2C subsystem

I2C functionality

Not all I2C controllers support all functionalities.
The I2C controller drivers therefore tell the I2C core
which functionalities they support.
An I2C device driver must check that the functionalities
they need are provided by the I2C controller in use on the
system.
The i2c check functionality function allows to make such
a check.
Examples of functionalities: I2C FUNC I2C to be able to
use the raw I2C functions,
I2C FUNC SMBUS BYTE DATA to be able to use
SMBus commands to write a command and read/write
one byte of data.
See include/uapi/linux/i2c.h for the full list of existing
functionalities.

Rafal Kapela — Linux Kernel 58/60



Linux device and driver model Introduction to the I2C subsystem

Resources
If you want to gain some knowledge by your own...

Wikipedia – Embedded system
http://en.wikipedia.org/wiki/Embedded_system

Greg Kroah-Hartman, O’Reilly, Linux Kernel in a Nutshell,
Dec 2006.
http://www.kroah.com/lkn/

Free Electrons - embedded Linux experts
http://free-electrons.com/

Rafal Kapela — Linux Kernel 59/60

http://en.wikipedia.org/wiki/Embedded_system
http://www.kroah.com/lkn/
http://free-electrons.com/


Linux device and driver model Introduction to the I2C subsystem

Questions ?

Rafal Kapela
rafal.kapela@put.poznan.pl

Rafal Kapela — Linux Kernel 60/60


	Linux device and driver model
	Example of the USB bus
	Platform drivers

	Introduction to the I2C subsystem

