
https://en.wikipedia.org/wiki/Embed
ded_system

Embedded system

Embedded system
• An embedded system is a computer

system with a dedicated function
within a larger mechanical or
electrical system, often with real-
time computing constraints.

• It is embedded as part of a complete
device often including hardware and
mechanical parts.

• Embedded systems control many
devices in common use today.

• Ninety-eight percent of all
microprocessors are manufactured as
components of embedded systems.

• An Embedded System is simply a
combination of computer hardware
and software, either fixed in
operability or programmable, which
is designed to perform a specific
function.

Embedded system
Properties of typically embedded computers
when compared with general-purpose
counterparts are:
• low power consumption,
• small size,
• rugged operating ranges,
• low per-unit cost.

• This comes at the price of limited processing
resources, which make them significantly
more difficult to program and to interact
with.

• However, by building intelligence
mechanisms on top of the hardware, taking
advantage of possible existing sensors and
the existence of a network of embedded
units, one can both optimally manage
available resources at the unit and network
levels as well as provide augmented
functions, well beyond those available.

• For example, intelligent techniques can be
designed to manage power consumption of
embedded systems.

Embedded system
• Modern embedded systems are often based

on microcontrollers (i.e. CPU's with
integrated memory or peripheral interfaces)

• Ordinary microprocessors (using external
chips for memory and peripheral interface
circuits) are also common, especially in
more-complex systems. In either case, the
processor(s) used may be types ranging from
general purpose to those specialised in
certain class of computations, or even
custom designed for the application at hand.

• A common standard class of dedicated
processors is the digital signal processor
(DSP).

• Due to the falling costs very popular are also
ready made computer boards intended for
small, low-volume embedded and
ruggedized systems, mostly x86-based.

• Their another advantage is standarisation
and worldwide accepted platform.

Embedded system
• Since the embedded system is

dedicated to specific tasks, design
engineers can optimize it to reduce
the size and cost of the product and
increase the reliability and
performance. Some embedded
systems are mass-produced,
benefiting from economies of scale.

• Embedded systems range from
portable devices such as digital
watches and MP3 players, to large
stationary installations like traffic
lights, factory controllers, and largely
complex systems like hybrid vehicles,
Magnetic resonance imaging MRI,
and avionics. Complexity varies from
low, with a single microcontroller
chip, to very high with multiple units,
peripherals and networks mounted
inside a large chassis or enclosure.

Applications

• Embedded systems are
commonly found in
consumer, cooking,
industrial, automotive,
medical, commercial
and military
applications.

Applications
Telecommunications systems
employ numerous embedded
systems
• telephone switches for the

network
• cell phones at the end user
• computer networking uses

dedicated routers and
network bridges to route
data.

Applications
Consumer electronics
• MP3 players,
• mobile phones,
• videogame consoles,
• digital cameras,
• GPS receivers,
• Printers
Household appliances include embedded systems
to provide flexibility, efficiency and features in:
• microwave ovens,
• washing machines
• dishwashers

Advanced HVAC (Heating, ventilation and air
conditioning) systems use
• networked thermostats to more accurately

and efficiently control temperature that can
change by time of day and season.

Home automation uses wired- and wireless-
networking that can be used to control
• lights,
• climate,
• security,
• audio/visual,
• surveillance, etc.,
all of which use embedded devices for sensing
and controlling.

Applications
Transportation systems from flight to
automobiles increasingly use embedded systems.
Airplanes:
• advanced avionics
• inertial guidance systems
• GPS receivers
(have considerable safety requirements).

Various electric motors — brushless DC motors,
induction motors and DC motors — use
electric/electronic motor controllers.

Automobiles, electric vehicles, and hybrid
vehicles increasingly use embedded systems to
maximize efficiency and reduce pollution.

Automotive safety systems:
• anti-lock braking system (ABS),
• Electronic Stability Control (ESC/ESP),
• traction control (TCS) ,
• automatic four-wheel drive.

Applications
Medical equipment uses
embedded systems for :
• vital signs monitoring,
• electronic stethoscopes for

amplifying sounds,
• various medical imaging (PET,

SPECT, CT, and MRI) for non-
invasive internal inspections.

Embedded systems within
medical equipment are often
powered by industrial computers.

Applications
A new class of miniature wireless
devices called motes are networked
wireless sensors. Wireless sensor
networking, WSN, makes use of
miniaturization made possible by
advanced IC design to couple full
wireless subsystems to sophisticated
sensors, enabling people and
companies to measure a myriad of
things in the physical world and act
on this information through IT
monitoring and control systems.

These motes are completely self-
contained, and will typically run off a
battery source for years before the
batteries need to be changed or
charged.
Embedded Wi-Fi modules provide a
simple means of wirelessly enabling
any device which communicates via
a serial port.

Applications
Embedded systems are used
in transportation, fire safety,
safety and security, medical
applications and life critical
systems, as these systems
can be isolated from hacking
and thus, be more reliable.

For fire safety, the systems
can be designed to have
greater ability to handle
higher temperatures and
continue to operate. In
dealing with security, the
embedded systems can be
self-sufficient and be able to
deal with cut electrical and
communication systems.

Characteristics
Embedded systems are
designed to do some specific
task, rather than be a general-
purpose computer for multiple
tasks.

• Some also have real-time
performance constraints
that must be met, for
reasons such as safety and
usability.

• Others may have low or no
performance requirements,
allowing the system
hardware to be simplified to
reduce costs.

Characteristics
• Embedded systems are not

always standalone devices.
• Many embedded systems

consist of small parts within
a larger device that serves a
more general purpose.

• The program instructions
written for embedded
systems are referred to as
firmware, and are stored in
read-only memory or flash
memory chips.

• They run with limited
computer hardware
resources: little memory,
small or non-existent
keyboard or screen.

User interface
• Embedded systems range

from no user interface at
all, in systems dedicated
only to one task, to
complex graphical user
interfaces that resemble
modern computer
desktop operating
systems.

• Simple embedded devices
use buttons, LEDs, graphic
or character LCDs
(HD44780 LCD for
example) with a simple
menu system.

User interface
• More sophisticated

devices which use a
graphical screen with
touch sensing or screen-
edge buttons provide
flexibility while
minimizing space used.

• The meaning of the
buttons can change with
the screen, and selection
involves the natural
behavior of pointing at
what is desired.

• Handheld systems often
have a screen with a
"joystick button" for a
pointing device.

User interface
• Some systems provide user

interface remotely with the
help of a serial (e.g. RS-232,
USB, I²C, etc.) or network
(e.g. Ethernet) connection.

This approach gives several
advantages:

• extends the capabilities of
embedded system,

• avoids the cost of a display,

• simplifies BSP (board
support package)

• allows one to build a rich
user interface on the PC.

Webbased interface

• A good example of this
is the combination of an
embedded web server
running on an
embedded device (such
as an IP camera) or a
network router.

The user interface is
displayed in a web
browser on a PC
connected to the device,
therefore needing no
software to be installed.

Processors in embedded systems
Embedded processors can be broken
into two broad categories.
• Ordinary microprocessors (μP)

use separate integrated circuits
for memory and peripherals.

• Microcontrollers (μC) have on-
chip peripherals, thus reducing
power consumption, size and
cost.

• In contrast to the personal
computer market, many different
basic CPU architectures are used,
since software is custom-
developed for an application and
is not a commodity product
installed by the end user.

• Both Von Neumann as well as
various degrees of Harvard
architectures are used. RISC as
well as non-RISC processors are
found.

Ready made computer boards
• Another branch of embeded

systems are ready made
computer boards intended for
small, low-volume embedded
and ruggedized systems,
mostly x86-based ora ARM ,
but not only.

• These are often physically
small compared to a standard
PC, although still quite large
compared to most simple
(8/16-bit) embedded systems.

• They often use DOS, Linux,
NetBSD, or an embedded real-
time operating system such as
MicroC/OS-II, QNX or
VxWorks.

Ready made computer boards
• In certain applications, where small

size or power efficiency are not
primary concerns, the components
used may be compatible with those
used in general purpose x86 personal
computers.

• Boards such as the VIA EPIA (VIA
Embedded Platform Innovative
Architecture)range help to bridge the
gap by being PC-compatible but
highly integrated, physically smaller
or have other attributes making them
attractive to embedded engineers.

• The advantage of this approach is
that low-cost commodity
components may be used along with
the same software development
tools used for general software
development.

• Systems built in this way are still
regarded as embedded since they are
integrated into larger devices and
fulfill a single role.

Ready made computer boards
• However, most ready-made

embedded systems boards are
not PC-centered and do not
use the ISA or PCI buses.

• When a system-on-a-chip
processor is involved, there
may be little benefit to having
a standarized bus connecting
discrete components, and the
environment for both
hardware and software tools
may be very different.

• One common design style uses
a small system module,
perhaps the size of a business
card, holding high density BGA
chips such as an ARM-based
system-on-a-chip (SoC)
processor and peripherals,
external flash memory for
storage, and DRAM for
runtime memory.

Ready made computer boards
• The module vendor will usually

provide boot software and make sure
there is a selection of operating
systems, usually including Linux and
some real time choices.

• These modules can be manufactured
in high volume, by organizations
familiar with their specialized testing
issues, and combined with much
lower volume custom mainboards
with application-specific external
peripherals.

• Implementation of embedded
systems have advanced, embedded
systems can easily be implemented
with already made boards which are
based on worldwide accepted
platform. These platforms include,
but are not limited to, Arduino, Intel
Galileo and Raspberry Pi.

ASIC and FPGA solutions
• A common array of n

configuration for very-high-
volume embedded systems
is the system on a chip (SoC)
which contains a complete
system consisting of
multiple processors,
multipliers, caches and
interfaces on a single chip.

• SoCs can be implemented
as an application-specific
integrated circuit (ASIC) or
using a field-programmable
gate array (FPGA).

Peripherals
Embedded systems talk with the outside world
via peripherals, such as:

• Serial Communication Interfaces (SCI): RS-

232, RS-422, RS-485, UART etc.
• Synchronous Serial Communication

Interface: I2C, SPI, SSC and ESSI (Enhanced
Synchronous Serial Interface)

• Universal Serial Bus (USB)
• Multi Media Cards (SD cards, Compact Flash,

etc.)
• Networks: Ethernet, LonWorks, etc.

• Fieldbuses: CAN-Bus, LIN-Bus, PROFIBUS, etc.
• Timers: PLL(s), Capture/Compare and Time

Processing Units
• Discrete IO: aka General Purpose

Input/Output (GPIO)
• Analog to Digital/Digital to Analog (ADC/DAC)
• Debugging: JTAG, ISP, ICSP, BDM Port, BITP,

and DB9 ports.

Reliability
• Embedded systems often reside in machines

that are expected to run continuously for
years without errors, and in some cases
recover by themselves if an error occurs.

• Therefore, the software is usually developed
and tested more carefully than that for
personal computers, and unreliable
mechanical moving parts such as disk drives,
switches or buttons are avoided.

Specific reliability issues may include:
• The system cannot safely be shut down for

repair, or it is too inaccessible to repair.
Examples include space systems, undersea
cables, navigational beacons, bore-hole
systems, and automobiles.

• The system must be kept running for safety
reasons. "Limp modes" are less tolerable.
Often backups are selected by an operator.
Examples include aircraft navigation, reactor
control systems, safety-critical chemical
factory controls, train signals.

• The system will lose large amounts of money
when shut down: telephone switches,
factory controls, bridge and elevator
controls, funds transfer and market making,
automated sales and service.

Reliability
A variety of techniques are used, sometimes in
combination, to recover from errors—both software
bugs such as memory leaks, and also soft errors in the
hardware:
• watchdog timer that resets the computer unless the

software periodically notifies the watchdog
subsystems with redundant spares that can be
switched over to software "limp modes" that
provide partial function

• Designing with a Trusted Computing Base (TCB)
architecture ensures a highly secure & reliable
system environment

• A hypervisor designed for embedded systems, is
able to provide secure encapsulation for any
subsystem component, so that a compromised
software component cannot interfere with other
subsystems, or privileged-level system software.
This encapsulation keeps faults from propagating
from one subsystem to another, improving
reliability. This may also allow a subsystem to be
automatically shut down and restarted on fault
detection.

• Immunity Aware Programming - programming
techniques which improve the tolerance of
transient errors in the program counter or other
modules of a program that would otherwise lead to
failure. Transient errors are typically caused by
single event upsets, insufficient power, or by strong
electromagnetic signals transmitted by some other
"source" device.

High vs. low volum
For high volume systems
such as portable music
players or mobile phones,
minimizing cost is usually
the primary design
consideration. Engineers
typically select hardware
that is just “good enough” to
implement the necessary
functions.

• For low-volume or
prototype embedded
systems, general purpose
computers may be
adapted by limiting the
programs or by replacing
the operating system with
a real-time operating
system.

Embedded software architectures
There are several different types of software architecture in
common use:
• Simple control loop
• Interrupt-controlled system
• Cooperative multitasking
• Preemptive multitasking or multi-threading
• Microkernels and exokernels
• Monolithic kernels
• Additional software components

Simple control loop

In this design, the software simply has a loop.

The loop calls subroutines, each of which manages a
part of the hardware or software. Hence it is called a
simple control loop or control loop.

Interrupt-controlled system
Some embedded systems are predominantly controlled by interrupts. This means that
tasks performed by the system are triggered by different kinds of events; an interrupt
could be generated, for example, by a timer in a predefined frequency, or by a serial
port controller receiving a byte.

These kinds of systems are used if event handlers need low latency, and the event
handlers are short and simple. Usually, these kinds of systems run a simple task in a
main loop also, but this task is not very sensitive to unexpected delays.

Sometimes the interrupt handler will add longer tasks to a queue structure. Later, after
the interrupt handler has finished, these tasks are executed by the main loop. This
method brings the system close to a multitasking kernel with discrete processes.

Cooperative multitasking
A nonpreemptive multitasking system is very similar to the
simple control loop scheme, except that the loop is hidden in an
API. The programmer defines a series of tasks, and each task gets
its own environment to “run” in. When a task is idle, it calls an
idle routine, usually called “pause”, “wait”, “yield”, “nop” (stands
for no operation), etc.

The advantages and disadvantages are similar to that of the
control loop, except that adding new software is easier, by simply
writing a new task, or adding to the queue.

Preemptive multitasking or multi-
threading

In this type of system, a low-level piece of code switches between tasks
or threads based on a timer (connected to an interrupt). This is the
level at which the system is generally considered to have an "operating
system" kernel. Depending on how much functionality is required, it
introduces more or less of the complexities of managing multiple tasks
running conceptually in parallel.
As any code can potentially damage the data of another task (except in
larger systems using an MMU) programs must be carefully designed
and tested, and access to shared data must be controlled by some
synchronization strategy, such as message queues, semaphores or a
non-blocking synchronization scheme.

Preemptive multitasking or multi-
threading

Because of these complexities, it is common for organizations to use a real-
time operating system (RTOS), allowing the application programmers to
concentrate on device functionality rather than operating system services, at
least for large systems; smaller systems often cannot afford the overhead
associated with a generic real time system, due to limitations regarding
memory size, performance, or battery life.
The choice that an RTOS is required brings in its own issues, however, as the
selection must be done prior to starting to the application development
process.
This timing forces developers to choose the embedded operating system for
their device based upon current requirements and so restricts future options
to a large extent.

Preemptive multitasking or multi-
threading

The restriction of future options becomes more of an issue
as product life decreases. Additionally the level of
complexity is continuously growing as devices are required
to manage variables such as serial, USB, TCP/IP, Bluetooth,
Wireless LAN, trunk radio, multiple channels, data and
voice, enhanced graphics, multiple states, multiple threads,
numerous wait states and so on. These trends are leading to
the uptake of embedded middleware in addition to a real-
time operating system.

Microkernels and exokernels
A microkernel is a logical step up from a real-time OS. The usual arrangement
is that the operating system kernel allocates memory and switches the CPU to
different threads of execution. User mode processes implement major
functions such as file systems, network interfaces, etc.

In general, microkernels succeed when the task switching and intertask
communication is fast and fail when they are slow.

Exokernels communicate efficiently by normal subroutine calls. The hardware
and all the software in the system are available to and extensible by
application programmers.

Monolithic kernels
In this case, a relatively large kernel with sophisticated capabilities is adapted to suit an
embedded environment. This gives programmers an environment similar to a desktop
operating system like Linux or Microsoft Windows, and is therefore very productive for
development.
It requires considerably more hardware resources, is often more expensive, and,
because of the complexity of these kernels, can be less predictable and reliable.

Common examples of embedded monolithic kernels are embedded Linux and
Windows CE.

Despite the increased cost in hardware, this type of embedded system is increasing in
popularity, especially on the more powerful embedded devices such as wireless routers
and GPS navigation systems.

Monolithic kernels – reasons of
popularity

• Ports to common embedded chip sets are available.
• They permit re-use of publicly available code for device drivers, web

servers, firewalls, and other code.
• Development systems can start out with broad feature-sets, and then the

distribution can be configured to exclude unneeded functionality, and save
the expense of the memory that it would consume.

• Many engineers believe that running application code in user mode is
more reliable and easier to debug, thus making the development process
easier and the code more portable.

• Features requiring faster response than can be guaranteed can often be
placed in hardware.

Additional software components
In addition to the core operating system, many embedded systems
have additional upper-layer software components.
These components consist of networking protocol stacks like CAN,
TCP/IP, FTP, HTTP, and HTTPS, and also included storage capabilities like
FAT and flash memory management systems.
If the embedded device has audio and video capabilities, then the
appropriate drivers and codecs will be present in the system.
In the case of the monolithic kernels, many of these software layers are
included.
In the RTOS category, the availability of the additional software
components depends upon the commercial offering

