
http://git.eti.pg.gda.pl/intel-
grant/pliki/esa/Embedded_Systems_Arc

hitecture_2016_P1.pdf

Embedded System Architecture

Progress between 1950-2000: from 20 KOPS to 480 GFLOPS

Martinez, D. R., Bond, R. A., & Vai, M. M. (Eds.). (2008). High performance
embedded computing handbook: A systems perspective. CRC Press.

Introduction
• Internet of Things (IoT)

The network of physical objects or "things" embedded with
electronics, software, sensors and connectivity to enable
data exchange between the identified devices.

• Sensors and other elements:

Buzzer, Button, LED, Rotary Angle, Sound Sensor, Smart
Relay, Temperature, Touch Sensor, Light Sensor, Mini Servo,
LCD RGB Backlight

Embedded system

• A/D and D/A converters

• Sensors

• Actuators

• Signal processing unit

Embedded system

• Signal processing can
requires fast
preprocessing in
additional unit,
dedicated to that task

Introduction
Embedded system requires:
• Hardware (dedicated sensors/actuators, CPU)
• Software (operating system, drivers, algorithms, etc.)
Hardware can comprise of ready electronic boards with necessary
sensors/actuators.

Software requires initialization procedure, tasks scheduling, multi-tasking for
parallel events, has to solve constraints of CPU resources Software means:
• application
• operating system (prepared mainly in C language; small percentage in

assembler)

Introduction
There is a gap between
hardware design, system
design and software design.

Influence of economy – the
way of selecting hardware.

• Hardware: 2x/18 months

• System: 1.6x/18 months

• Software: 2x/24 months

ES software model

Hardware-dependent
software
Ecker, W., Müller, W., & Dömer, R. (2009).
Hardware-dependent Software. Springer
Netherlands.

ES software model
• Application software: responsible for

overall software functionality
• Middleware: provides application-

specific services (e.g. database
access)

• Operating System: manages and
coordinates application software
tasks for sharing of available software
and hardware resources

• Communication Protocol Stacks:
software modules on top of device
drivers

• Device Drivers: software access to
hardware resources by a few
functions (open, initialize, access,
close)

• Boot Firmware: performs initial boot
proces

• Hardware Abstraction Layer: an
abstract interface to access hardware
resources (access, register, functional
shielding)

ES software model – operating system

Protection in space domain: sharing
the same memory (a safety-critical
application individual address spaces
for processes are crucial)

ES software model – operating system

Protection in time domain: scheduler
implements temporal partitioning in
processes and sharing the procesor
time

ES software model – communication

Communication can be performer at
various layers

New systems enable tasks/data
transmissions at hardware level

ES software model – initialization procedures

Initialization sequence:

• Processor initialization
– Intterupts disable, cache

clearing

– Data copy from ROM into
RAM memories

– Cache, interrupt vectors,
system hardware
initializations

– Zeroing memory

• OS loading/booting
– Multitasking environment

initialization, interrupt and
root stacks creation

– Initialization of I/O ports,
drivers, setup networks

RTOS and Multi-tasking: tasks
divisions and scheduling,
Interrupts services

ES software structure

Application in linear programming
is a set of consecutive functions

In real-time system we require the
kernel to assure fast interrupt service
routines

ES software model – initialization procedures

RTOS and Multi-tasking: tasks divisions and scheduling, interrupts services

Software task is defined by Task_start and Task_end events

Tasks synchronization State model of tasks in RTOS

ES Memory space
• Physical memory
• Virtual memory (user and kernel space)

KERNEL – the modules of the OS that have been loaded into RAM and have allocated memory

Kernel of Operating Systems and Device Drivers
• OS depends on the ES and can be established due to its functions, tasks

and architecture

Kernel of Operating Systems and
Device Drivers

• Kernel comprises of the
modules which have to
be registered in the OS

• The modules in Linux
OS have names,
properties and methods

Kernel of Operating Systems and
Device Drivers

Device Drivers assure interface to handle requests for the device operations
Software interface to the device driver is implemented as kernel modules
Software interface can configure device, perform I/O operations, perform interrupt
requests

Devices types:
• character device (terminal) – stream of bites like a file (open, close, read, write)
• block (disk) – transfer randomly data in blocks
• network; pseudodevice

We call a device driver at initialization/configuration I/O operations, interrupts

Kernel of Operating Systems and
Device Drivers

ES software preparation

• The software files structure

ES compiler options
Compiler can use various options when preparing the executable code:
• Level0 – all variables are located into the registers
• Level1 – removes local variables and unused expressions + L0
• Level2 – loops optimization + L1
• Level3 – removes unused functions + L2

Programming and hardware limitations
• Detailed reports of hardware use
• Power management using sleep modes and clock rate
• Code length versus speed of the system performance
• Other programming methods

ES debugging and testing
Real-time analysis and run control:
• GUI can control: source code, registers, function

calls, variables, statistics, etc.; read/write
memory and registers; execution control (single
step, breakpoint, watchpoint, etc.)

• Target board can communicate with the PC by
JTAG, USB, Ethernet etc.

• Emulator: necessary for debugging

ES software preparation
The main rules for safety critical
programming (Gerard J. Holzmann
NASA/JPL Laboratory for Reliable
Software Pasadena)
• Restrict to simple control flow

constructs
• Give all loops a fixed upper-bound
• Do not use dynamic memory

allocation after initialization
• Limit functions to no more than 60

lines of text
• Use minimally two assertions per

function on average

• Declare data objects at the smallest
possible level of scope

• Check the return value of non-void
functions, and check the validity of
function parameters

• Limit the use of the preprocessor to
file inclusion and simple macros

• Limit the use of pointers. Use no
more than two levels of
dereferencing per expression

• Compile with all warnings enabled,
and use one or more source code
analyzers (e.g. available at
http://spinroot.com/static/)

ES software preparation – general remarks

• Process – an instance of a computer program, comprises of a code and can be
characterized by its current activity

Process may be made of multiple threads of executions – instructions managed
independently by the scheduler (scheduler determines access to system resources)

Overheads for creating a thread are significantly less than for creating the process

Switching between the threads is much less absorbing for the OS than doing the same
between the processes

ES software preparation – general remarks

• Multitasking – one proces serves to multiple clients

Multithreated programs have to be prepared more carefully (not all proces features
are available)

Debugging is more difficult

Performance of a single procesor machine can be reduced due to multiple threads

ES software preparation – threads in Linux

• Thread states in Linux

ES software preparation

• Kernel processes in Linux

• A kernel proces can be preempted by another kernel proces

• Critical regions, for competitive resources use, can be protected by disabling
interrupts or preemption

• Multiprocessor system require synchronization techniques for the data acessed by
multiple CPUs

• Mutual exclusion (MUTEX):

Protection against modifying the shared data by different threads using
locking/unlocking mechanism of critical sections where the data could be shared

ES software preparation

• Semaphores
A dedicated variable used for controlling access to the resources by multiple processes
It is used in parallel programming or in multi-user environment
Gets values of 0, 1 (for binary semaphores of two options locked/unlocked) or higher for
arbitrary resources counting (counting semaphores)
• Semaphores can be:

– Initialized
– Terminated
– Increased
– Decreased

• Another mechanism ensuring mutual exclusion:
Busy-wait lock – lock is released and the thread waits until the lock is available
It is used when the mechanism is faster than putting the thread in a sleeping mode

Unified Extensible Firmware Interface
(UEFI)

Interface between operating system and platform
firmware
• Device drivers can be prepared

independently from the OS
• UEFI should replace BIOS (Basic Input/Output

System)
• Will suport remote diagnostics and repair
• Is independent from the CPU
• Supports huge HDD
UEFI is answer to the limitations of the BIOS:
• 16- bits processors
• Limited HDD size

Hardware interfaces
Multicore systems are designed
by applying various
interfaces/links:
• Host Port Interface
• Serial Port (very simple and

often available in the ES)
• Link Port
Clusters can be designed if the
computational tasks can be
divided into separate processes

Hardware interfaces
Advanced computing can be performer by cloud
computing – centralized data storage and online
access to computer services or resources There
are pros and cons of that solution.
Pros:
• Scale and cost
• Next generation architectures
• Choice and aglity
• Encapsulated change management
Cons:
• Lock-in
• Security
• Lack of control
• Reliability

Hardware interfaces
Cloud computing.
The IoT Cloud Analytics site is provided as a
service to the IoT development community

The data can be send to the cloud within a few
steps only:
• Get an account from the Intel IoT Analytics

Site
• Get and install the IoT Gateway Agent

– Admin: tests connectivity, activates a device,
registers time series and sends observations
all from the command line;

– Agent: runs a services by sending simple
messages)

• Register your Device(s)
• Download and install the IoT Arduino Library

(each sensor has to be registered)
• Write your scripts and send the data to the

cloud

CPU Architecture
CPU architecture depends on type of
application:
• von Neuman architecture (CPU and

memory with one bus)
• Harward architecture (CPU with two

buses for data and program memory
separately)

Specialized chips can have combination
of both types of the CPU working
independently (e.g. for video coding: one
for video processing and the second for
controlling interfaces

Necessary computations are performer
by: ALU, MAC, SHIFTER units

CPU Architecture

CPU architecture depends

on type of application

DSP optimized to perform

A*B+C operations

Analog devices DSP

CPU Architecture
CPU architecture for DSP algorithms
with two independent streams of
data performing A*B+C operations

C6713 Texas Instruments Digital
Signal Processor
Mechanisms:
• pipelining
• parallelism
• VLIW

CPU Architecture
Intel Quark SoC – ultra small
chips for gadgets (wearable
devices – small size and low
power consumption)
Cheap with developed numerous
interfaces;
Applied in Galileo board.

The CPU instruction set is the
same as a Pentium (P54C/i586)
CPU

CPU Architecture

Intel Quark SoC
• 400 MHz maximum operating frequency
• Cache, internal memory (flash, SRAM),
• Low power options to run at half or at quarter of maximum CPU frequency
• 32-bit address bus, 32-bit data bus
• 16 Kbyte shared instruction and data L1 cache
• Interfaces: UART, USB Host Port, I2C, SPI
Power management:
• S0 – full power on
• S1, S2, S3, S4 – sleeping states; parts of the chip are in a sleeping state to reduce power consumption
• S5 - system is switched off

• Operating system: Linux (e.g. Debian 7.0 Wheezy)
• one-fifth the size and one-tenth the power of low-end Atom chip

CPU Architecture
Intel Quark internal
architecture includes:
• 32 bit RISC integer core;
• Single cycle execution;
• Instruction pipelining;
• Floating-point unit;
• Cache for data and

instructions;
• Memory management unit

CPU Architecture

Atom Silvermont – low-power Atom processors used in systems on a chip applied in
Intel Edison board for tablets, smartphones and other wearable devices; launched by
Intel in 2012

Applied in the Intel Edison board:

• high performance with high power efficiency

• pipeline mechanisms

• multi-core support (two cores, second-level cache)

• WiFi

Development boards

Various SDK systems have been proposed for different digital technologies. The
common elements are:

Development boards
• Arduino – open-source computer

software and hardware for sensing
and controlling physical world;
designed for Atmel AVR
microcontrollers and microprocessors

• STM32F4 DISCOVERY 32-bits ARM
Cortex®-M4 processor; much faster
with additional elements (build-in
sensors, touchscreen, camera,
memory card)

Development boards
Analog Devices Blackfin BF548 EZ-kit

• touchscreen, keyboard, HDD,
additional interfaces for video and
audio applications

Development boards - Galileo
400MHz 32-bit Intel® Pentium instruction set architecture
(ISA)-compatible processor o 16 KBytes on-die L1 cache 512
KBytes of on-die embedded SRAM

Simple to program: Single thread, single core, constant speed

ACPI compatible CPU sleep states supported

An integrated Real Time Clock (RTC), with an optional 3V “coin
cell” battery for operation between turn on cycles; 10/100
Ethernet connector

Full PCI Express mini-card slot, with PCIe 2.0 compliant
features

Works with half mini-PCIe cards with optional converter plate

Provides USB 2.0 Host Port at mini-PCIe connector

USB 2.0 Host connector

Support up to 128 USB end point devices

USB Device connector, used for programming

10-pin Standard JTAG header for debugging

Reboot button to reboot the processor

Reset button to reset the sketch and any attached shields

Development boards - Galileo

Development boards – software

• Intel Edison: software stack

Development boards – fast programming

Additional tools help to accelerate fast programming and apps preparation
• Integrated Performances Primitives

– Signal processing
– Image processing
– Matrix operations
– Cryptograph

• Math Kernel Library
– Various Math functions (e.g. FFT)

• Cordova
– Building apps for BlackBerry, IOS, Android, Windows desktop

• Sensors
– Sensors fusion (various measurements at the same time improve applications and results)

Development boards – system preparation

Intel Edison Yocto Project:
• Open source project aimed to limit

time for making the build systems
• Compatible with various linux

distributions (Ubuntu, Fedora,
openSUSE, CentOS, Debian); stable
releases are issued within a few
months

• Helps to develop industrial standards
of reliable operating systems for ES

• Software comprises of separate
layers (each layer can be prepared
using various set of files)

