
http://git.eti.pg.gda.pl/intel-
grant/pliki/esa/Embedded_Systems_Arc

hitecture_P2.pdf

Embedded system

Software and hardware minimizing energy
consumption

Designers have at least three
options available that can be
used to minimize system
maintenance and ernergy
consumption:
• Hardware energy

optimization
• Software energy

optimization
• Energy harvesting

• Minimizing power
consumption – in practice –
the action in order to reach
a compromise between the
energy consumed by the
system, and its
performance.

Software and hardware minimizing energy
consumption

In many applications, it is
required at the same time low
power consumption and high
performance, which is
contradictory, forcing
designers to seek compromise.

Energy demand should be
considered at the concept
stage of the system.

In many cases wrong decisions
will have irreversible effects
• System excesive energy

consumption
• System performence below

minimum acceptable level.

Software and hardware minimizing energy
consumption

System conception
System design HW
and SW HW testing

SW testing

HW and SW
integration

System testing Production

Time

Hardware minimizing energy consumption -
μControllers

Hardware minimizing energy consumption:
• Work with a supply voltage as low as possible -

power consumption is proportional to the square of
the supply voltage.

Lower supply voltage and lower system clock frequency
gives lower system performance

• Work with a system clock frequency as low as

possible - power consumption is proportional to the
system clock frequency.

Lower system clock frequency and lower system
performance gives extended processing time.

Example - Frequency versus supply voltage – ATxmega
family.

Software minimizing energy consumption - μControllers

How to save energy?
By using of available power-saving modes, as
follows:
• μController should spend as much time as

possible in sleep modes.
• In Active mode μController should work with

maximum performance.
• Active mode should be as short as possible. It

is a well known method.
Effectiveness of this method depends on:
• how the designer can deal with the effective

use of power-saving modes and shorten the
duration of the application with maximum
performance.

• Estimating the energy demand of the system
using power-saving modes designer has to
take into account in the energy balance
energy needed to wake up CPU (wake-up
energy).

Software minimizing energy consumption - μControllers

Software minimizing energy consumption - μControllers

Software minimizing energy consumption - μControllers

Software minimizing energy consumption - μControllers

Other exemplary methods:
• Repeated explicit substitutions

– reduce the number of jump
instructions;

• Replacement of a single
complex instruction set of
simple instructions e.g.
modulo instruction (may take
from 2 to 12 clock cycles) –
may be replaced by a simple
control of the variable state.

Software minimizing energy consumption - μControllers

Compilation
option

Code size Energy
consumed
within 1 sec

Max. speed 5456b
(+38%)

41 μJ

Min. size 3944b 77,6 μJ
(+92%)

Software compilation with
code optimization:
• optimization option – max.

speed
Cost:
– larger code size;
Benefits:
– shorter work time with max.

performance;
– smaller number of

instructions to execute.

Software minimizing energy consumption - DSP

• Effective usage of the
Interrupt system;

• Data transfer via DMA
channels;

• Effective usage of the
Event system;

• Code optimization;
• FFT hardware

acceleration

• Frequency scaling.
• Supply voltage scaling.
• Usage of the power-

saving modes:
– Power STANDBY mode;
– Power SLEEP mode;
– Power DEEPSLEEP mode.

• Proper use of the above
mentioned options.

TI DSP processors C5XXX
Power Scaling Library:
• Scaling operation to scale frequency and voltage or frequency only;
• Query operations that return current frequency and voltage settings;
• Query operations that return available frequencies settings and the

required voltage settings for those frequencies
• Query operation that returns the latencies associated with a scaling

operation;
• Callbacks to user code before and after scaling operations. These callbacks

will enable users to perform any necessary peripheral modifications that
may be required as a result of the upcoming/just completed scaling
operation.

TI DSP processors C5XXX

TI DSP processors C5XXX
The DSP/BIOS Power Manager, PWRM – module that lets you reduce the
power consumption of your application. The PWRM module provides the
following capabilities:
• Resource Tracking.
• Scaling Voltage and Frequency.
• Using Sleep Modes.
• Coordinating Sleep and Scaling.
’C55x PWRM additional capabilities:
• Idling Clock Domains.
• Saving Power at Boot Time.
• DSP Device Initialization.

Analog Devices DSP processors
Dynamic Power Management
Controller – consists of two
main components which
allows flexibility in managing
power dissipation on the
processor:

• Operating Modes;

• Peripheral Clocking;

• Dynamic Voltage Control.

Operating modes:

• Full-on mode;

• Active mode;

• Sleep mode;

• Deep Sleep mode.

INTEL processors
Various power states:
• System Sleep States (S-

States)
• Processor Power States

(C-States)
• Processor Performance

Power States (P-States)

Power Management
Technologies:
• C-State Auto Demotion
• Intel® Turbo Boost

Technology
• Virtualization Power

Management
• Memory Power

Management

INTEL processors
Advanced Configuration and Power Interface (ACPI) Supported States

P-States are a sub-state of the C0 state
• Offer reduced power consumption while the processor is executing

code.
C-States are a sub-state of the S0 state
• Offer reduced power consumption while the system is fully on.

INTEL processors
System Sleeping Power States (S-States) – S-States allow the system to save a
power when not being used.
• S0 – Full on: Processor Operating. Individual devices may be shut down or

be placed into lower power states to save power.
• S3 – Suspend-to-RAM: System context maintained in DRAM. Power shut off

to non-critical circuits. Memory is retained and refreshes continue. All
clocks are stopped except RTC clock.

• S4 – Suspend-to-Disk: System context maintained on disk. All power is then
shut off except for that needed to resume.

• S5 – Soft off: System context not maintained. All power is shut off except
for that needed to restart. A full boot is required when waking.

INTEL processors

S-States reduce power consumption significantly.
Latency back to S0 is in the order of seconds. Wake
event can be trigged by:

• a motion sensor;

• remotely using Intel® Active Management Technology
(Intel® AMT);

• a timer or another activity (LAN or GPIO) pins.

INTEL processors
Processor Power and Performance Power States

• Processor Power States (C-States):
– Reduces power consumption by sleeping the processor when it

doesn’t have code to execute.

– Entry and Exit delays are much smaller compared to S-States.

• Processor Performance Power States (P-States): Enhanced
Intel SpeedStep® Technology
– Reduces power consumption without preventing the processor

from executing code.

INTEL processors

Processor C-States:

• C-States ensure lower processor power during idle
light workloads;

• C-State limits can be set by BIOS;

• A processor can go into sleep states several thousand
times per second;

• OS controls the C-states in its idle process.

INTEL processors

INTEL processors
C-State Auto Demotion:

In general, Latency and Energy entry/exit costs increase with
deeper C-States.

C-State Auto Demotion prevents unnecessary excursions
into C6 & C3 states to improve latency.

INTEL processors
Two C-State auto-demotion options.

Requests for C6 or C3 will route to C3 or C1 until sufficient
residency is established.
Decision to demote is based on each core’s immediate
residency history. This feature is disabled by default. See
your BIOS vender to enable this feature.

INTEL processors

Processor Performance Power States (P-States):

• P0 - Processor consumes max power and is at
max performance.

• P1 - Processor consumes less power and
performance capabilities are limited below max.

• Pn - Performance is at minimal level and lowest
power consumption. n must not exceed 16.

INTEL processors

Multiple voltage and frequency operating points:

• Software controlled by writing to MSRs;

• The voltage is optimized based on the selected
frequency and number of active processor cores;

• All active processor cores share the same frequency
and voltage.

Number of supported states is processor dependent.

INTEL processors
P-states (Where are they useful?):
• P-States are useful when the system runs non-critical

workloads that don’t require higher performance.
• P States are useful when the system in power sensitive

markets that don’t care so much about performance. i.e.
longer battery life.

• P States is useful under interactive modes where the
system is waiting for user inputs.

• When I/O or memory is throttled.

INTEL processors
The Aggressiveness of P states. Set via OS:
• Linux – P States can be configured based on the end users using governors:

– “On Demand” (Preferred) –can be customized;
– Performance – Aggressive Performance;
– Power save – Aggressive Power;
– User space- User can set upper and lower limits.

• Windows – has power management schemes to set the values:
– Balanced;
– Max Battery;
– Max Performance;
– Custom.

INTEL processors
Virtualization Power Management - Workload consolidation during off peak
usage. Memory Power Management. Intel® Turbo Boost Technology.

INTEL CoreTM2 Duo Processor
• Improved power saving in an Idle state.

Enhanced Deeper Sleep state both the CPU
cores and chipset will power down without
shutting the system down completely.

INTEL CoreTM2 Duo Processor
Intel Dynamic Acceleration Technology –
support applications executed via a single
thread.

Smart Cache Technology – single pool of
memory for both cores – in case that
only one core was under load, it had
access to all the cache.

AMD processors

Enhanced AMD PowerNow!™ Technology – for
reduced power consumption by the entire processor.
Native quad-core technology enables enhanced power
management across all four cores.

• High Performance mode;

• Power-Saver mode;

• Automatic mode.

AMD processors
• Independent Dynamic Core Technology – allows each core to

vary its frequency, based on the specific needs of the system.
This allows for more precise power management to reduce
data center energy consumption and thereby reduce total cost
of ownership (TCO).

• Dual Dynamic Power Management™ - allows each processor
to maximize the power-saving benefits of Enhanced AMD
PowerNow! technology without compromising performance.
Dual Dynamic Power Management can reduce idle power
consumption and allow for per-processor power management
in multi-socket systems to decrease power consumption.

AMD processors
• AMD CoolCore™ Technology – To reduce power

consumption within each core AMD CoolCore Technology
evaluates which parts of the die – the cores, the memory,
or both – are needed to support currently running
applications. It can cut power to unused transistor areas
to reduce power consumption and lower heat generation.

• AMD Smart Fetch Technology – AMD Smart Fetch
Technology helps reduce power consumption by allowing
idle cores to enter a “halt” state, causing them to draw
even less power during processing idle times.

AMD processors

• Integrated DDR3 DRAM Memory Controller: low-
power memory to help reduce power consumption.
AMD’s integrated memory controller works with high
bandwidth, energy-efficient DDR3 memory, both
standard power 1.5v and low voltage 1.35v memory.
It incorporates memory RAS for increased fault
tolerance to help reduce system downtime and
increase system reliability.

ACPI Advanced Configuration and
Power Interface

The principal goals of ACPI and OSPM are to:
• Enable all computer systems to implement motherboard configuration and power

management functions, using appropriate cost/function tradeoffs.
• Enhance power management functionality and robustness.

– Power management policies too complicated to implement in a ROM BIOS can be
implemented and supported in the OS, allowing inexpensive power managed hardware to
support very elaborate power management policies.

– Gathering power management information from users, applications, and the hardware
together into the OS will enable better power management decisions and execution.

– Unification of power management algorithms in the OS will reduce conflicts between the
firmware and OS and will enhance reliability.

• Facilitate and accelerate industry-wide implementation of power management.
• Create a robust interface for configuring motherboard devices.

Preemptive multitasking or multi-
threading

Because of these complexities, it is common for organizations to use a real-
time operating system (RTOS), allowing the application programmers to
concentrate on device functionality rather than operating system services, at
least for large systems; smaller systems often cannot afford the overhead
associated with a generic real time system, due to limitations regarding
memory size, performance, or battery life.
The choice that an RTOS is required brings in its own issues, however, as the
selection must be done prior to starting to the application development
process.
This timing forces developers to choose the embedded operating system for
their device based upon current requirements and so restricts future options
to a large extent.

Preemptive multitasking or multi-
threading

The restriction of future options becomes more of an issue
as product life decreases. Additionally the level of
complexity is continuously growing as devices are required
to manage variables such as serial, USB, TCP/IP, Bluetooth,
Wireless LAN, trunk radio, multiple channels, data and
voice, enhanced graphics, multiple states, multiple threads,
numerous wait states and so on. These trends are leading to
the uptake of embedded middleware in addition to a real-
time operating system.

Microkernels and exokernels
A microkernel is a logical step up from a real-time OS. The usual arrangement
is that the operating system kernel allocates memory and switches the CPU to
different threads of execution. User mode processes implement major
functions such as file systems, network interfaces, etc.

In general, microkernels succeed when the task switching and intertask
communication is fast and fail when they are slow.

Exokernels communicate efficiently by normal subroutine calls. The hardware
and all the software in the system are available to and extensible by
application programmers.

Monolithic kernels
In this case, a relatively large kernel with sophisticated capabilities is adapted to suit an
embedded environment. This gives programmers an environment similar to a desktop
operating system like Linux or Microsoft Windows, and is therefore very productive for
development.
It requires considerably more hardware resources, is often more expensive, and,
because of the complexity of these kernels, can be less predictable and reliable.

Common examples of embedded monolithic kernels are embedded Linux and
Windows CE.

Despite the increased cost in hardware, this type of embedded system is increasing in
popularity, especially on the more powerful embedded devices such as wireless routers
and GPS navigation systems.

Monolithic kernels – reasons of
popularity

• Ports to common embedded chip sets are available.
• They permit re-use of publicly available code for device drivers, web

servers, firewalls, and other code.
• Development systems can start out with broad feature-sets, and then the

distribution can be configured to exclude unneeded functionality, and save
the expense of the memory that it would consume.

• Many engineers believe that running application code in user mode is
more reliable and easier to debug, thus making the development process
easier and the code more portable.

• Features requiring faster response than can be guaranteed can often be
placed in hardware.

Additional software components
In addition to the core operating system, many embedded systems
have additional upper-layer software components.
These components consist of networking protocol stacks like CAN,
TCP/IP, FTP, HTTP, and HTTPS, and also included storage capabilities like
FAT and flash memory management systems.
If the embedded device has audio and video capabilities, then the
appropriate drivers and codecs will be present in the system.
In the case of the monolithic kernels, many of these software layers are
included.
In the RTOS category, the availability of the additional software
components depends upon the commercial offering

