
Lecture 1
Developing software for large projects

of the ES industry

ES Software Engineering

Embedded Systems Software Engineering - Lecture 1 2016 1

Subject matter

The subject covers the following topics:
• nature of contemporary embedded systems and the direction of the field
• problem of creating, expanding and managing complex projects of class "system

of systems"
• methods and tools for modeling systems
• communication methods between designer and engineers teams
• types of software licenses
• porting a software layer to a new hardware architecture
• project management tools
• hardware layer emulators
• domestic market of embedded systems

2016 Embedded Systems Software Engineering - Lecture 1 2

Plan of the lectures
Lecture 1 – Developing large software projects

Lecture 2 – Requirements specification, testing and defects

Lecture 3 – Unified Modeling Language

Lecture 4 – State Machine Diagrams

Lecture 5 – Use case modeling and Application logic design

Lecture 6 – Implementation and testing

Lecture 7 – System and Data architecture design / Software licence

Lecture 8 – ES Developer tools + Credit

2016 Embedded Systems Software Engineering - Lecture 1 3

Lecture 1

1. History of the development of embedded systems

2. Embedded systems today

3. Multiprocessor systems

4. Systems of systems

5. Software life cycles

2016 Embedded Systems Software Engineering - Lecture 1 4

Embedded systems

What characterizes an embedded system?
1. Location: software within a dedicated hardware

2. Function: implementation of a specific task – not a general purpose system

3. Functionality: interaction with a dedicated environment

2016 Embedded Systems Software Engineering - Lecture 1 5

Embedded systems

The history of embedded systems:
1944-1952 – Whirlwind I

1971 – Intel 4004 (4-bit) (2300 transistors)

1972 – Intel 8008 (8-bit) (2500 transistors)

The 70s – automotive industry (controlling fuel mixes)

1984 – Intel 8080 (8-bit) (2MHz, ±5V, +12V, 72 instructions)

2014 – Intel Xeon (4.31 billion transistors)

2016 Embedded Systems Software Engineering - Lecture 1 6

Embedded systems today

Nowadays

 Sonicare Plus toothbrush with
 an 8-bit Zilog Z8 microprocessor

Linux in Lernstift pen

2016 Embedded Systems Software Engineering - Lecture 1 7

Embedded systems

Nowadays

2016 Embedded Systems Software Engineering - Lecture 1 8

Embedded systems

NASA’s Twin Mars Rovers
Microprocessor 20MHz

Commercial RT OS

OS and software developed during

the flight to Mars and downloaded

via space.

2016 Embedded Systems Software Engineering - Lecture 1 9

Embedded systems

I’m driving or I’m carried:
7-series BMW, S-class Mercedess – about 100 processors

Low-profile Volvo – about 50-60 processors

„econobox” – a few dozen different microprocessors

2016 Embedded Systems Software Engineering - Lecture 1 10

Embedded systems
In multiprocessor systems each module can have a different hardware layer,
and thus also a different port for the software layer. Are we able to manage
such a project without a proper plan/model/design/tools? How to go about
such a project anyway?

And how about a SYSTEM OF SYSTEMS?

2016 Embedded Systems Software Engineering - Lecture 1 11

Embedded systems

System of systems

2016 Embedded Systems Software Engineering - Lecture 1 12

Embedded systems processors

Microprocessors sales by type [3]

2016 Embedded Systems Software Engineering - Lecture 1 13

 PCB

Developing software

Traditional approach:

2016 Embedded Systems Software Engineering - Lecture 1 14

INTERFACE

CPU
ADC

SENSORS

DAC

MEM
FPGA/other

DIGITALS

MECHANICAL

SOFTWARE

Developing software

Current approach:

INTEGRATED

2016

 CHIP

Embedded Systems Software Engineering - Lecture 1 15

CHIP

CPU FPGA

MEM ASG

GRAPHICS
CARD

SOFTWARE

Developing Embedded Systems
Conclusion:
1.Multiprocessor systems dominating
2.In the nearest future systems of systems will be developed
3.Entering a market requires knowing various technologies, many hardware
architectures, multiple programming languages and multiple software
development tools
4.Commercial projects are created by many teams (sometimes corporations)
and are characterized by a high degree of complexity
5.Communication between teams requires using a top-down model and tools to
develop a project
6.To control such a project, a way of managing it should be defined in advance and
should stick to assumptions
7.The adopted method of administration defines the so-called software lifecycle

2016 Embedded Systems Software Engineering - Lecture 1 16

Programming languages

2016 Embedded Systems Software Engineering - Lecture 1 17

Developing software

2016 Embedded Systems Software Engineering - Lecture 1 18

Software lifecycle

„Waterfall” model (Herbert D. Benington 1956)

2016 Embedded Systems Software Engineering - Lecture 1 19

Planning

Analysis

Design

Implementations

Testing

Final evaluation

Maintenance

EVALUATION

Waterfall model

Planning and Analysis (steps 1 and 2)
• The result of steps is the specification of system functions, its interface,

the way it relates to the environment, as well as system parameters, e.g.
accuracy.

• The documentation also defines how to implement the system – modules
and software planned to be used.

• Guidelines should be kept during later stages.

2016 Embedded Systems Software Engineering - Lecture 1 20

Waterfall model

Design (step 3)
1. An initial distribution of software components assigning them their

functions

2. Planning tests

3. Preparing a project specification divided into modules and algorithms

4. Defining data structures

5. Preparing an initial documentation of module tests

2016 Embedded Systems Software Engineering - Lecture 1 21

Waterfall model
Implementation (step 4)

Programming and testing modules
The result is:

1. source code with a listing of programs

2. instructions for performing tests

Testing (step 5)
1. report concerning testing components (not modules)

2. updated software source code and a new project specification

3. configuration unit testing instruction

2016 Embedded Systems Software Engineering - Lecture 1 22

Waterfall model

Final evaluation (step 6)
The result of this stage is a ready-to-sell product (the designed system)

Maintenance (step 7)
The purpose of maintenance is to adapt the system to the needs of an
individual customer.

Maintenance may constitute more than 50% of a company income of
software development companies.

2016 Embedded Systems Software Engineering - Lecture 1 23

Waterfall model

Waterfall model

2016 Embedded Systems Software Engineering - Lecture 1 24

Pros
• Well organized process
• Complete model
• Milestones
• Well documented

Cons
• Long process
• Costly
• Frequent turn-backs
• Requirements hard to be

completely specified
• Uncertainty of success

Waterfall model

Most common errors:

•wrongly defined input data

•underestimating the role of the first phases of the model

•none or unreliable assessment of the successive stages of the
project

•not using project management tools or CAD tools for
developing software

•no documentation of subsequent stages of project development

•changes in the assumptions of the project during implementing

2016 Embedded Systems Software Engineering - Lecture 1 25

Software prototyping

Model basing on prototype (s.c. software prototyping):

2016 Embedded Systems Software Engineering - Lecture 1 26

Not ready

Preliminary requirements

Prototype development

Prototype evaluation

Porting to the final technology

Testing

Final product

model – incomplete
system designed for
testing a planned
functionality

Software prototyping

Software prototyping

2016 Embedded Systems Software Engineering - Lecture 1 27

Pros
• Better requirements

recognition
• Easy to change prototype
• Lower risk
• Visualisation at the beginning

Cons
• High costs
• Misunderstanding – prototype

treaded as the final version
• Final version may not be

optimal

Spiral iterative model

Spiral model

(B. Boehm 1986):

2016 Embedded Systems Software Engineering - Lecture 1 28

Spiral iterative model

Spiral iterative model

2016 Embedded Systems Software Engineering - Lecture 1 29

Pros
• Complete requirements

achieved in many cycles
• Lower risk according to

evaluation
• There is always a possibility for

developing the project
• The assessment phases make it

possible to detect errors earlier

Cons
• Customer feels a lack of

benefits from continuous
improvement

• Large cost of error elimination
in the finally used software

• New versions with new errors

Rational Unified Process

RUP (Ken Hartman i B. Boehm – the 80s and the 90s.; official
version by Philippe Kruchten in 1998.)
• Iterative software development, developed by the Rational Software

Corporation (now acquired by IBM).

• Rational Unified Process is also a name of software available from
IBM. The RUP process is also defined in the Rational Method
Composer tool and its lighter version in the Eclipse Process
Framework (both sponsored by IBM)

2016 Embedded Systems Software Engineering - Lecture 1 30

Rational Unified Process
RUP – genesis
Ken Hartman and Barry Boehm in their research – analyzed mistakes made during
developing software The most common are:

• no requirements management

• ambiguous communication

• Brittle software architecture

• redundant software complexity

• lack of proper care during testing or too small number of tests

• subjective tests assessment

• no risk management

• no automation during project development

2016 Embedded Systems Software Engineering - Lecture 1 31

Rational Unified Process

What is RUP:

1. Iterative Development

2. Requirement Management

3. Component-based architecture

4. Graphical modeling and visual design

5. Quality Assurance

6. Change Management

2016 Embedded Systems Software Engineering - Lecture 1 32

Rational Unified Process

RUP –> Iterative Development

• one master phase plan and many iteration plans

• each iteration improves software architecture

• including stakeholders at each milestone

• cheaper and simpler software integration step by step

• easy management of changes in requirements

• each iteration allows to detect threats

2016 Embedded Systems Software Engineering - Lecture 1 33

Rational Unified Process

RUP –> Requirement Management

• identification, detecting changes and meeting the needs of
users

• project covers an important function for the user

• RUP involves understanding the needs of shareholders

• Scope Management

• SRS in a more detailed view (Software Requirements
Specification)

• Requirements change management

2016 Embedded Systems Software Engineering - Lecture 1 34

Rational Unified Process

RUP –> Component-based architecture
• Component = a collection of related objects, in the context of object-

oriented programming

• Extensible, understandable and a re-usable system

• Simple architecture in early iterations – prototype

• Implementing components in technologies CORBA, COM, JEE

• Components often become separate products

2016 Embedded Systems Software Engineering - Lecture 1 35

Rational Unified Process

RUP –> Graphical Software Modeling
• Unified Modeling Language (UML)

– modeling with diagrams

– well known and understandable

– better understanding of the structure of a solution

• Visual software design
– easy to use visual tools (not UML diagrams)

2016 Embedded Systems Software Engineering - Lecture 1 36

Rational Unified Process

RUP –> Quality Assurance
• Quality control is often the weakest point of the process – performed

after the construction of the system and operated by another team

• RUP assumes a location of the control during the whole process

• RUP assumes each team member working with the control

• Early error detection and elimination (costs and benefits)

2016 Embedded Systems Software Engineering - Lecture 1 37

Rational Unified Process

RUP –> Change Management
• Methods of tracking, recording and controlling changes

• Secure workspaces – definition of areas within which no changes
should threaten the system one is creating

• A concept of secure workspaces is closely associated with the
component-oriented architecture

2016 Embedded Systems Software Engineering - Lecture 1 38

Rational Unified Process

RUP phases

2016 Embedded Systems Software Engineering - Lecture 1 39

time

RUP phases

2016 Embedded Systems Software Engineering - Lecture 1 40

1. Inception
• Business goals analysis
• Use-cases model
• Project plan
• Preliminary risk analysis
• Preliminary requirements specification

2. Elaboration
• System analysis and design
• Completeness of the Use Case model at

80%
• Designed system architecture
• Checking objectives reachability and

possible risks
• Detailed schedule for the entire project

3. Construction
• Implementation and testing
• Stable product – ready for deployment
• Customers ready for product

acceptance
• Actual costs and time are within

acceptable limits

3. Transition
• From development to deployment
• User training and beta testing
• Actual costs and time are acceptable
• Main milestone: satisfaction of the

users/customers

Alternatives

Alternative approaches

• Open UP (Open Unified Process)

• Eclipse Process Framework (EPF)

• Enterprise Unified Process

• Agile programming

2016 Embedded Systems Software Engineering - Lecture 1 41

Bibliography
[1] Ignacy Pardyka, „Systemy wbudowane. 01.ES: Wprowadzenie”, Ignacy Pardyka, UJK Kielce

[2] http://www.mhealthtalk.com/smart-toilets-a-royal-flush-for-home-healthcare/

[3] http://electroiq.com/blog/2014/01/microprocessor-sales-growth-will-strengthen-slightly-in-2014/

[4] http://wazniak.mimuw.edu.pl/

[5] Jarosław Kuchta, „Embedded Systems Software Engineering – Software lifecycle”, 2015

[6] https://en.wikipedia.org/wiki/Spiral_model

[7] https://pl.wikipedia.org/wiki/Rational_Unified_Process

[8] Roger S. Pressman, „Software Engineering. A Practitioner's Approach”

[9] IBM, „Rational Unified Process. Best Practices for Software Development Teams”

[10] OMG.ORG, „Unified Modeling Language”

[11] Eclipse.org, „Introduction to OpenUP”

[12] Scott W. Ambler, „Introduction to the Enterprise Unified Process”

[13] Agile Manifesto (HTML)

[14] Kent Beck, „Extreme Programming Explained. Embrace Change” (book with Cynthia Andres)

2016 Embedded Systems Software Engineering - Lecture 1 42

http://www.mhealthtalk.com/smart-toilets-a-royal-flush-for-home-healthcare/
http://www.mhealthtalk.com/smart-toilets-a-royal-flush-for-home-healthcare/
http://www.mhealthtalk.com/smart-toilets-a-royal-flush-for-home-healthcare/
http://www.mhealthtalk.com/smart-toilets-a-royal-flush-for-home-healthcare/
http://www.mhealthtalk.com/smart-toilets-a-royal-flush-for-home-healthcare/
http://www.mhealthtalk.com/smart-toilets-a-royal-flush-for-home-healthcare/
http://www.mhealthtalk.com/smart-toilets-a-royal-flush-for-home-healthcare/
http://www.mhealthtalk.com/smart-toilets-a-royal-flush-for-home-healthcare/
http://www.mhealthtalk.com/smart-toilets-a-royal-flush-for-home-healthcare/
http://www.mhealthtalk.com/smart-toilets-a-royal-flush-for-home-healthcare/
http://www.mhealthtalk.com/smart-toilets-a-royal-flush-for-home-healthcare/
http://www.mhealthtalk.com/smart-toilets-a-royal-flush-for-home-healthcare/
http://www.mhealthtalk.com/smart-toilets-a-royal-flush-for-home-healthcare/
http://www.mhealthtalk.com/smart-toilets-a-royal-flush-for-home-healthcare/
http://www.mhealthtalk.com/smart-toilets-a-royal-flush-for-home-healthcare/
http://electroiq.com/blog/2014/01/microprocessor-sales-growth-will-strengthen-slightly-in-2014/
http://electroiq.com/blog/2014/01/microprocessor-sales-growth-will-strengthen-slightly-in-2014/
http://electroiq.com/blog/2014/01/microprocessor-sales-growth-will-strengthen-slightly-in-2014/
http://electroiq.com/blog/2014/01/microprocessor-sales-growth-will-strengthen-slightly-in-2014/
http://electroiq.com/blog/2014/01/microprocessor-sales-growth-will-strengthen-slightly-in-2014/
http://electroiq.com/blog/2014/01/microprocessor-sales-growth-will-strengthen-slightly-in-2014/
http://electroiq.com/blog/2014/01/microprocessor-sales-growth-will-strengthen-slightly-in-2014/
http://electroiq.com/blog/2014/01/microprocessor-sales-growth-will-strengthen-slightly-in-2014/
http://electroiq.com/blog/2014/01/microprocessor-sales-growth-will-strengthen-slightly-in-2014/
http://electroiq.com/blog/2014/01/microprocessor-sales-growth-will-strengthen-slightly-in-2014/
http://electroiq.com/blog/2014/01/microprocessor-sales-growth-will-strengthen-slightly-in-2014/
http://electroiq.com/blog/2014/01/microprocessor-sales-growth-will-strengthen-slightly-in-2014/
http://electroiq.com/blog/2014/01/microprocessor-sales-growth-will-strengthen-slightly-in-2014/
http://electroiq.com/blog/2014/01/microprocessor-sales-growth-will-strengthen-slightly-in-2014/
http://electroiq.com/blog/2014/01/microprocessor-sales-growth-will-strengthen-slightly-in-2014/
http://wazniak.mimuw.edu.pl/
https://en.wikipedia.org/wiki/Spiral_model
https://pl.wikipedia.org/wiki/Rational_Unified_Process

