
Lecture 2
Requirements specification, testing

and defects

ES Software Engineering

Embedded Systems Software Engineering 2016 1

Previous lecture

1. Embedded systems today:
1. Multiprocessor systems and systems of systems

2. Software lifecycle:
1. Waterfall model

2. Spiral model

3. RUP

2016 Embedded Systems Software Engineering 2

Plan of the lecture

1. Requirements engineering – definition

2. System Requirements Specification

3. Requirements defects

4. Search technique to find requirements defects

5. Examples of defects

2016 Embedded Systems Software Engineering 3

Requirements engineering
1. Regardless of the decided software development strategy – the first
stage of the process is to define system requirements.

2. Mistakes at this stage significantly extend implementation time of the
final product.

3. By design – requirements are not constant, both during implementing
the system and during maintenance.

4. Because of point 3. requirements engineering constitutes separate
issues of software development.

2016 Embedded Systems Software Engineering 4

Requirements engineering

Software requirements aspects:

2016 Embedded Systems Software Engineering 5

Software

Human
resources

Hardware

Data
Procedures

Legislation,
standards

Documentation

Requirements engineering

Requirements engineering covers:
1. Determining project goals:

1. Business goals define customers’ benefits reached through implementation of the
project

2. Purpose defines main functions to serve business goals

2. Extracting requirements:
1. Functional requirements

2. Non-functional requirements (data, quality, safety etc.)

3. Agreement on rules for product acceptance

2016 Embedded Systems Software Engineering 6

Requirements source

Stakeholders:
• Business goals (customers and management)

• Functionality (end users)

• Community, stuff (other people)

Non personal
• Legislation and formal standards

• Informal standards

• Hardware

2016 Embedded Systems Software Engineering 7

Stakeholders
• Almost each system is a multidisciplinary system.

• The largest entry work is to develop a common language.

• The problem of communicating with a client from the other end of the
world.

• Man as the weakest element.

• A contractor does not appreciate the role of an extensive entry
documentation.

2016 Embedded Systems Software Engineering 8

Requirements extraction
• Realization of individual needs by shareholders

• Needs statement

• Transformation of the needs to system requirements

• Information and descriptions needed to understand the requirements
– Text and diagram description

– Formulas, charts

– Combined description

– Numbering requirements (with division to shareholders) – possibility of referring
to them

2016 Embedded Systems Software Engineering 9

Results

2016 Embedded Systems Software Engineering 10

Project

Valid
requirements

Invalid
requirements

What is the most important in a prototype:
• Fulfilling requirements?
• 100% of functionality?
• Legislation?
• DEADLINE

System Requirements

2016 Embedded Systems Software Engineering 11

System Requirements Specification:
1. Introduction
2. Basic Information
3. Functional Requirements
4. Non-functional Requirements
5. Acceptation Criteria
6. References
7. Appendices

System Requirements

2016 Embedded Systems Software Engineering 12

Ad. 1. Introduction:
1. Project identification
2. Short project description
3. Main project goal
4. Foundation
5. System vision – may be described in a separate document

System Requirements

2016 Embedded Systems Software Engineering 13

Ad. 2. Basic information:
1. Prioritized Requirement Sources

1. Stakeholders
2. other

2. Prioritized Project Objectives
1. Business goals determined by management
2. Purpose determined by end users

3. System Context
1. User roles
2. External Systems

4. Infrastructure conception (for complex systems)
1. Subsystems
2. Components

System Requirements

2016 Embedded Systems Software Engineering 14

Ad. 3. Functional Requirements:
1. System function description
2. Organization of requirements by users and by components
3. Requirement properties

1. Text description
2. Applies to users or an external system
3. Source of the requirement
4. Priority

Ad. 4. Non-functional Requirements
1. Data Requirements
2. Quality Requirements
3. Other Requirements

System Requirements

2016 Embedded Systems Software Engineering 15

Ad. 4. Non-functional requirements
Data:
• Main data concepts
• Data terms explanation
• Source of explanation
• Priority

System Requirements

2016 Embedded Systems Software Engineering 16

Ad. 4. Non-functional requirements
Quality:
• Reliability (safety, security, error tolerance)
• Performance (execution efficiency, interaction efficiency)
• Flexibility (portability, stability, scalability)
• Usability (learnability, understandability, operability)

System Requirements

2016 Embedded Systems Software Engineering 17

Ad. 4. Non-functional requirements
Other:
• Hardware constraints
• Software constraint
• Extraordinary situations (exceptional, critical, failover situations)
• Other

System Requirements

2016 Embedded Systems Software Engineering 18

Ad. 5. Acceptation criteria
1. Tests
2. Trial time
3. Maintenance
4. Specific constraints

System Requirements

2016 Embedded Systems Software Engineering 19

Ad. 5. References
1. System vision document
2. Technical documentation
3. Articles
4. Standards
5. Existing source code

System Requirements

2016 Embedded Systems Software Engineering 20

Ad. 6. References
1. Glossary
2. Tabular data
3. Diagrams

Ad. 7. Appendices
1. Glossary
2. Tabular data
3. Diagrams

Requirements defects

2016 Embedded Systems Software Engineering 21

Defects – results of mistakes during creating a product

Sources of mistakes:
• Lack of knowledge
• Lack of attention
• Schedule pressure

How to identify requirements defects to avoid their propagation
into the software.

Requirements defects

2016 Embedded Systems Software Engineering 22

• Costs caused by requirements defects = 70%
of total defects costs [7]

• Requirements defects consume up to 40% of
a total budget of many projects [7]

• Poor requirements are 5 of the top 8 reasons
for a project failure and accounted for 41-
56% of discovered errors [6],[8]

• 80% of all product defects have their reason
at the level of defining requirements [9]

• Because of requirements defects – 45% of
the developed functions are never used

Phase Relative Cost

Inspection 1

Design 10x

Testing 25x

Production >=100x

Requirements defects sources

2016 Embedded Systems Software Engineering 23

Sources of requirements defects [6]:

Missing information

Missing triggers

Implicit collections

Weak words

Unbounded domain

Ambiguity

Requirements defects sources

2016 Embedded Systems Software Engineering 24

E.g.
1. Software should run a test according to RRT strategy.
2. Software architecture should be based on our company classes.

Missing information everything reader
must guess

Requirements defects sources

2016 Embedded Systems Software Engineering 25

Missing triggers Almost all
requirements have
events or states
needed for them
to execute

E.g.
System should display an error message. At
which states should it be done?

Requirements defects sources

2016 Embedded Systems Software Engineering 26

Implicit collections Imperfect
definitions, not
explicit concepts

E.g.
System should operate at 1200 bps, 1400 bps,
1800bps and other speeds.
It should communicate using SPI, I2C, RS and
other protocols available under eCOS.

Requirements defects sources

2016 Embedded Systems Software Engineering 27

Non-precise
definitions and
designations

E.g.
quick, easy, fast, timely, frequent, often, intuitive, normal,
secure, user-friendly, immediate

Weak words

Requirements defects sources

2016 Embedded Systems Software Engineering 28

Lack of starting
and/or end point

E.g.
at least, such as, or later, including but not limited to
1. System should process data from at least one pair of cores.
2. This part of software should be coded after preparing
hardware specification or later.

Unbounded domain

Requirements defects sources

2016 Embedded Systems Software Engineering 29

Statements or
words with
multiple meanings

E.g.
Subjectivity, incompleteness, optionality, over-
generalization, passive voice, incomplete logic

The method is determined by the user.

Ambiguity

Find Requirements Defects

2016 Embedded Systems Software Engineering 30

Search technique to find requirements defects:
1. Common Requirements Syntax (CRS)
2. Checklist for Well-Written Requirements (WWR)
3. Ambiguity Checklist
4. Test for Missing Triggers
5. Checking Non-Functional Requirements Testability

Find Requirements Defects

2016 Embedded Systems Software Engineering 31

Ad.1. Common Requirements Syntax

[Trigger] [Precondition] Actor Action [Object]
E.g.
If a data frame was received, after detecting low power the system must turn
off the transmitter.
[Trigger]: data frame received
[Precondition]: detection of low power
Actor: system
Action: turn off
[Object]: transmitter

Find Requirements Defects

2016 Embedded Systems Software Engineering 32

Ad.2. Checklist for Well-Written Requirements

WWR must be:
1. Complete – sufficient detail
2. Correct – checked by stakeholders and Subject Matter Experts (SME)
3. Concise – only the needed information expressed in few words
4. Consistent – requirements must not conflict with any other requirement
5. Feasible – there is at least one implementation of requirements
6. Necessary – e.g. new product / competitive / customer’s needs
7. Prioritized – ordered according to its importance
8. Traceable – identified with a tag and uniquely
9. Unambiguous – single interpretation
10. Verifiable – via demonstration, analysis, inspection, testing

Find Requirements Defects

2016 Embedded Systems Software Engineering 33

Ad.3. Ambiguity checklist

1. Vagueness – weak inaccurate words
2. Subjectivity – weak words rely on a personal opinion
3. Optionality – wrong: should, may, if possible; proper: shall, must
4. Over-generalization – all, every, users etc.
5. Non-intelligibility – poor grammar, complex logic, "and" & "or" ambiguity
6. Passive voice – requirement does not name an actor
7. Incomplete logic – missing "else" of "if” loop
8. Time-logic ambiguity – confusion between a logical condition and the time domain

Find Requirements Defects

2016 Embedded Systems Software Engineering 34

Ad.4. Test for Missing Triggers
The test is about asking questions concerning triggers or
preconditions for all requirements which do not have defined
triggers.

Find Requirements Defects

2016 Embedded Systems Software Engineering 35

Ad.5. Checking Non-Functional Requirements Testability
NFRs are testable if they contain:
• scale – of measure used to quantify the statement
• meter – process used to establish location on a scale
• goal – minimum level on a scale required for a success

Find Requirements Defects

2016 Embedded Systems Software Engineering 36

1st Example
"If a user could not report a ticket, the system should notify the
administrator."
1. CRS (T)
2. WWR (F) not complete
3. Ambiguity checklist (F) time-logic confusion,

 incompleteness
4. Missing triggers (T)
5. NFR testability (NA)

Find Requirements Defects

2016 Embedded Systems Software Engineering 37

2nd Example
"The system should return at least 3 possible answers for each
question."
1. CRS (T)
2. WWR (F) not feasible, not verifiable
3. Ambiguity checklist (F) incompleteness, over-

 generalization
4. Missing triggers (F)
5. NFR testability (NA)

Find Requirements Defects

2016 Embedded Systems Software Engineering 38

3rd Example
"When the third option is chosen – the system must quickly
generate a report of the current position."
1. CRS (T)
2. WWR (F) not correct, not verifiable
3. Ambiguity checklist (F) incompleteness, subjectivity,

 vagueness
4. Missing triggers (F) quickly
5. NFR testability (T)

Find Requirements Defects

2016 Embedded Systems Software Engineering 39

4th Example
"Program should be run while data are transferred from server"
1. CRS (F) location of "while data"
2. WWR (F) not complete, not correct
3. Ambiguity checklist (F) passive voice, optionality

 vagueness
4. Missing triggers (T)
5. NFR testability (T)

Bibliography
[1] Jarosław Kuchta, “Embedded Systems Software Engineering: Requirements Engineering”

[2] Roger S. Pressman, “Software Engineering. A Practitioner's Approach”

[3] USA Department of Defense, “Systems Engineering Fundamentals”

[4] Klaus Pohl, Chris Rupp, “Requirements Engineering Fundamentals”

[5] IREB (International Requirements Engineering Board) Downloads

[6] John Terzakis, “Identifying Requirements Defects”, Intel Corporation, 2013

[7] Leffingwell & Widrig, 2003

[8] The CHAOS Report, 1995

[9] Hooks and Farry, 2001

[10] Standish Group Report, 1995

2016 Embedded Systems Software Engineering 40

