
Lecture 3

Unified Modeling Language

ES Software Engineering

Embedded Systems Software Engineering 2016 1

In the previous lecture

1. Requirements engineering

2. System Requirements Specification

3. Requirements defects

4. Search technique to find requirements defects

5. Examples

2016 Embedded Systems Software Engineering 2

Plan of the lecture

1. What is UML and its history

2. UML applications

3. UML diagrams

4. Class model

5. Class model – misunderstanding

6. Class diagram

7. Relations in UML class diagram

2016 Embedded Systems Software Engineering 3

History of UML
• The history of UML goes back to the 70’s, the time of the first object-

oriented programming languages

• 1996 – the first documentation of version 0.9 Unified Method (Rational
Software); creating the UML Consortium (HP, IBM, Oracle, Microsoft)
and the emergence of UML 1.0.

• Since 1997, until today, UML is developed by the Object Management
Group (OMG)

• 2005 – more than 100 organizations have developed UML 2.0; mainly
modeling for embedded systems was improved.

• 2012 – standardization of UML 2.4.1 (ISO/IEC 19505-1 & 19505-2)

2016 Embedded Systems Software Engineering 4

Development

Unified Modeling Language

What is UML?
• used for modeling

• used for design

• too high for implementation

2016 Embedded Systems Software Engineering 5

Implementation

Coding

Debugging

Design Modeling

Analysis

Design

Unified Modeling Language

UML (Unified Modeling Language)
Semi-formal modeling language for various systems developed by the Object Management Group.
It is used for modeling fragments of an existing reality or one to be developed, mostly for modeling
IT systems. Other applications: modeling business processes, systems engineering and
organizational structures engineering.

UML is used, as a rule, along with a graphical representation – symbols connected on diagrams.

UML is officially defined in the UML metamodel, i.e. Meta Object Facility (MOF).

UML metamodel and UML models are serialized in the XML Metadata Interchange (XMI) language.

To define limitations in UML, the Object Constraint Language (OCL) developed by IBM is used.

2016 Embedded Systems Software Engineering 6

Unified Modeling Language

What UML is not?
• a programming language – however, it is possible to generate source

code from diagrams

• a tool – it but specifies tools

• It is not a method of analysis and designing computer systems

2016 Embedded Systems Software Engineering 7

Unified Modeling Language

Fathers of UML:

 Grady Booch Ivar Jacobson James Rumbaugh

 (Booch method) (Use Cases) (OMT)

2016 Embedded Systems Software Engineering 8

Unified Modeling Language
Fields in which UML is used:
• Banking & finances
• Information sharing systems in corporations
• Computer Science
• Electronics
• Medicine
• Science
• Web services, retail sale
• Transport
• Telecommunication
• And everything else one can imagine.

2016 Embedded Systems Software Engineering 9

Unified Modeling Language

Model, Diagram, Abstraction

2016 Embedded Systems Software Engineering 10

SYSTEM

Model is an
abstract
representation of
a system

MODEL

Diagram

Diagram is a graphical
representation of a model

Refinement constraint problem

UML uses
diagrams to

model a
software
system

UML Diagrams

Static structure diagrams
• class diagrams

• component diagram

• deployment diagram

Functionality diagrams
• use case diagram

• interaction diagram

• sequence diagram

Behavioral diagrams
• state transition diagram

• activity diagram

2016 Embedded Systems Software Engineering 11

UML Diagrams

The basic division of UML diagrams:

2016 Embedded Systems Software Engineering 12

Structural diagrams of:
• Classes
• Objects
• Packages
• Components
• Implementations
• Complex structures

Dynamic diagrams of:
• Use Cases
• States
• Workflow
• Actions
• Cooperation
• Interactions
• Timing conditions

Class model

Class model purpose
• Static analysis of a problem domain

• Basis for functional and behavioral analysis

• Application logic design

• Help for implementation

• Walking down through various levels of abstraction

2016 Embedded Systems Software Engineering 13

Class model

Class diagram misunderstanding
1. Developers treat diagram classes as software structures (data & functions)

2. Modelers treat classes as abstraction of real world entities

Modeling classes – no need for:

• Many classes

• Many class attributes

• Class functions

ONE MODEL CLASS == MANY SOFTWARE CLASSES

2016 Embedded Systems Software Engineering 14

Class model misunderstanding

2016 Embedded Systems Software Engineering 15

Modelers Developers

Entity – sth that exists in the real world and has
a large set of features

Object – sth that exists in the model and has a
limited set of features

Class – An object or set of objects Object – A concrete instantiation of a class

Property – an informative feature of a class Attribute – an information held by object

Relationship – a logical binding between classes Link – a concrete binding between objects

Generalization-specialization – an ontology
relationship between two classes

Inheritance – a mechanism on passing features
from a generalized to a specialized class

Multiple inheritance – when a class has
multiple generalizations

Single inheritance – when a class has only one
direct generalization

Class model misunderstanding

2016 Embedded Systems Software Engineering 16

Modelers Developers

Aggregation – a relationship between classes
that allows joining two or more objects
together and creating a new object

Containment – a relationship between classes
that allows including one or more objects in
another object

Association – any other relationship between
two or more classes; associations between
more than two classes are hard to implement

Pointer, reference – a specific implementation of
an association; only two objects are
undirectionally linked, (bidirectional association

requires two pointers/references)

Association role – a name of an object when it
is linked to another object

Class name – can be used as a role substitute but
only when classes at opposite sides of the
association are different

Class model misunderstanding

2016 Embedded Systems Software Engineering 17

Modelers Developers

Association direction – a direction in which an
association should be read

Association navigation – determines the class
where a pointer/reference should be
implemented

Collection, list – a container of objects Array – a specific implementation of a collection

Multiplicity – a potential count of contained or
aggregated objects or associated objects playing
the same role

Array size – a concrete count of objects in an
array

Operation – an abstract action that can be
performed on an object of the class

Function – a concrete implementation of an
operation; needs parameters specification; can

be overloaded and overridden

Class model misunderstanding

2016 Embedded Systems Software Engineering 18

Modelers Developers

Class name – a name of a class
Object name – can be different from or the same
as the class name

Class name – a name of a class when it is used
in a model; it can consist of two or more words
and national letters

Class identifier – a name of a class when it is
implemented in a program; only one word is
allowed, national letters in some languages

ID property – not needed in analysis needed in database design

Visibility (private, protected, public) – not
needed in analysis; all features are public

can be used in design

UML construction
Notation:
• Graphical elements

• Modeling language syntax

• The essence of sketching
models

2016 Embedded Systems Software Engineering 19

Metamodel:
• Definitions of language

concepts and connections
between them

Notation of diagram elements.
The notation is more important for
the analyst because it allows to
understand the model by others.

Metamodel is the semantic of
elements. During implementation it
is more important to understand
the meaning of elements.

Model views
UML diagrams are divided into views. One of the ways to implement such
a task is the Kruchten’s view model 4+1.

2016 Embedded Systems Software Engineering 20

Logic view

Process
view

Physical
view

Development
view

Use-Case
view

Model views
Logical View – modeling of system parts and ways in which they work
together. It includes:

• Class diagrams

• Object diagrams

• State machine diagrams

• Interaction diagrams

Process View – describes and visualizes processes and cases occurring in
the system. Consists of Action diagrams.

2016 Embedded Systems Software Engineering 21

Model views
Design View – models the way of organizing system parts into modules
and components. Consists of a:

• Package diagram

• Component diagram

Physical View – explains the way in which the system design, described
in logical, process and design views, works in the form of real objects. The
view is the closest to the process of the actual deployment of the system
and includes deployment diagrams.

2016 Embedded Systems Software Engineering 22

Model views
Use Cases View – describes the functionality of modeling such a system
from an external perspective. This description also includes the purpose
of the system. All 4 views refer to the Use Cases view. This view contains:

• Use Cases diagrams

• Overview diagrams

2016 Embedded Systems Software Engineering 23

Class diagram

Class diagram:
• Is one of the most important UML diagrams

• Contains information of static relations between classes

• Classes are closely linked to object-oriented programming techniques

2016 Embedded Systems Software Engineering 24

Class diagram

The basic element of a diagram is a class. It is defined as a
rectangle containing 3 sections:

• a name
stereotype class_name label_value_list

• attribute
stereotype accessibility attribute_name : type = start_value
label_value_list

• operations
stereotype accessibility method_name (arg_list) :
return_value_type label_value_list

All elements of a class specification, except the name, are optional.

2016 Embedded Systems Software Engineering 25

Class diagram

Accessibility of method:
• + public

- private
secured
~ package scope

arg_list: type arg_name : type = start_value

A type defines the way in which the method uses a given argument:

• in – the method can read an argument but cannot modify it

• out – can modify, cannot read

• inout – can read and modify

2016 Embedded Systems Software Engineering 26

Class diagram

Example:

2016 Embedded Systems Software Engineering 27

Teakettle

- CompanyName : string=BOSCH
- ModelName : string=GH56J
- factoryNumber : int = 83741
capacity : float = 1.70
+ socket: int

+ turn_on()
+ turn_off()
+ is_on() : boolean
+ set_time(float)

Class diagram

Multiplicity – defines the minimum and maximum number of objects which

can be associated with a given class. Saved as:

start_value .. end_value

Example multiplicity notations:

• 1 – simplified notation 1..1 meaning exactly 1 object

• 0..1 – a single optional object

• 1..* – at least one

• * – any number

• 2, 6, 7 – exactly this much

2016 Embedded Systems Software Engineering 28

USB printer

+ Model: String

User

+ Name: String

Printer server

+ Address: String

1 1..9

1

*

Class diagram
Attribute declaration:
[visibility] name [size] [:type] [=start_value] [property]

Property:

• Changeable

• addOnly

• readOnly, frozen

Examples:

- ModelName : string = BOSCH readOnly

+ capacity : float = 1.70 frozen

2016 Embedded Systems Software Engineering 29

Teakettle

- CompanyName : string=BOSCH
- ModelName : string=GH56J
…

+ turn_on()
+ set_time(float)
…

Class diagram
Operation declaration:
[visibility] name [parameters] [:type_of_result][property]

Where parameters are defined as follows:
[mode] name : type [=default_value]

Mode:

• modifiable: out, inout

• unmodifiable: in

Property:

• Leaf – feature which cannot be overwritten (non-polimorfic)

• isQuerry – function not changing the object

• Sequential, concurrent, guarded – concurrent operations

2016 Embedded Systems Software Engineering 30

Teakettle

- CompanyName : string=BOSCH
- ModelName : string=GH56J
…

+ turn_on()
+ set_time(float)
…

Class diagram

Relations between classes:
• Inheritance

• Total aggregation

• Partial aggregation

• Association

• Relation

2016 Embedded Systems Software Engineering 31

St
re

n
gt

h

Relations

Dependency
One class uses objects from a second class. Changes in one class may
cause changes in the second class. A dependency is usually used case of
one class using another class as a parameter.

Types of dependencies:

• <<use>> – implementation of the first class needs using a second class

• <<create>> – first class creates an instantiation of a second class

• <<instantiate>> – object x is an instantiation of class Y

• <<call>> – operations in class X cause operations in class Y

2016 Embedded Systems Software Engineering 32

Relations

Association
Describes a temporary relation between objects of two classes.

Association is a stronger relation than a dependency and objects with
associations are independent on each other i.e. removing one object
doesn’t cause needs for removing another one.

Notation of association contains phrases: {from when < to when} and
some verb like "contains", "consists", "is owner", "is contained".

2016 Embedded Systems Software Engineering 33

Relations

Association
UML allows to define an association class related to an association of
classes.

Example:

2016 Embedded Systems Software Engineering 34

Buying Customer
+ concern + submit

Purchase

- Date
- Channel

* 1

Relations

Aggregation is a relation whole-part

Partial aggregation – part may belong to many wholes

2016 Embedded Systems Software Engineering 35

Shop catalogue
Producer catalogue

find()
sort()

Model : String
Manufacture date : date
Color : String
…

*

A white rhombus on the
owner’s side

Relations

Complete aggregation – a part may belong to a whole
which creates parts.

2016 Embedded Systems Software Engineering 36

Product Equipment

Color : String
Size : float
…

Name : String
Price: float *

Relations

Inheritance – creates class hierarchy, general to
specific

2016 Embedded Systems Software Engineering 37

Type catalogue

Catalogue

Catalogue of models

Mark catalogue

Relations

Multiple inheritance – a class inherits from more
than one class

2016 Embedded Systems Software Engineering 38

Bare software

Kernel Controllers

System

Software

Scripts

Tests

Relations

Abstract class:
• describes the common functionality of a group of classes –

identifies common behavior of different classes
• notation

class_name or {abstract} class_name

• cannot have objects
• must define subclasses because they cannot create their own

instances
• methods are associated with an abstract class only through

inheritance

2016 Embedded Systems Software Engineering 39

Bibliography
[1] Grady Booch, James Rumbaugh, Ivar Jacobson, Unified Modeling User Guide (book PDF)

[1] Tom Pender: UML Bible. John Wiley & Sons, 2003.

[2] http://brasil.cel.agh.edu.pl/~09sbfraczek/uml-definicja-historia,1,54.html

[3] Jarosław Kuchta, Unified Modeling Language (Foundation), 2015

[4] http://brasil.cel.agh.edu.pl/~09sbfraczek/diagram-klas,1,11.html#

2016 Embedded Systems Software Engineering 40

http://brasil.cel.agh.edu.pl/~09sbfraczek/uml-definicja-historia,1,54.html
http://brasil.cel.agh.edu.pl/~09sbfraczek/uml-definicja-historia,1,54.html
http://brasil.cel.agh.edu.pl/~09sbfraczek/uml-definicja-historia,1,54.html
http://brasil.cel.agh.edu.pl/~09sbfraczek/uml-definicja-historia,1,54.html
http://brasil.cel.agh.edu.pl/~09sbfraczek/uml-definicja-historia,1,54.html
http://brasil.cel.agh.edu.pl/~09sbfraczek/diagram-klas,1,11.html
http://brasil.cel.agh.edu.pl/~09sbfraczek/diagram-klas,1,11.html
http://brasil.cel.agh.edu.pl/~09sbfraczek/diagram-klas,1,11.html

