
Lecture 4

State Machine Diagrams

ES Software Engineering

Embedded Systems Software Engineering 2016 1

In the previous lecture

1. Designing software using UML

2. UML diagrams

3. Class model – misunderstanding

4. Class diagram

5. Relation types in UML class diagrams

2016 Embedded Systems Software Engineering 2

Plan of the lecture

1. Interfaces

2. Package diagrams

3. State machine diagrams
– States, transitions

– Notation in UML

– Concurrent states, pseudo states

– Examples

2016 Embedded Systems Software Engineering 3

Interfaces

Interface – constitutes an abstract entry to classes. It contains
declarations of attributes and methods but does not implement them.

• Notation in a form of a class:

• or:

2016 Embedded Systems Software Engineering 4

<<interface>>
Overview

+ switch_check(x : Overview) : String

Switch Overview

Overview

Object diagram

Object diagram (class instance diagram)
• is a functional extension of the class diagram

• used for modeling examples for understanding class diagrams

• contains actual case prototypes

• contains copies of elements of the class diagram

• the notation is simplified comparing to class diagrams

• is object-oriented and not relations between classes-oriented

2016 Embedded Systems Software Engineering 5

Object diagram

Object diagram notation:

Association:

2016 Embedded Systems Software Engineering 6

object_name : represented_class_name
1attribute_name = 1attribute_value
2attribute_name = 2attribute_value
…

Object1 Object1
name

Object diagram

Example:

 Class diagram: Object diagram:

2016 Embedded Systems Software Engineering 7

Mobile Control system

Software Hardware

Mobile device : Hardware

User devices : Hardware

Automatic devices : Hardware

Linux : Software Controllers : Software

master

master

Package diagram
Growth of the modeled system imposes the need to simplify the model.
Modeled entities can be grouped into packages:

• a package contains model elements similar in meaning (classes,
interfaces, components)

• packages are loosely linked

• package elements are highly consistent inside a package

• package elements can be: classes (as a rule) but also interfaces,
operations, diagrams, other packages etc.

2016 Embedded Systems Software Engineering 8

Package diagram

Packages – when to use:
• In order to implement the tree structure of model elements

• For evaluating the quality of the model and coherence of links inside the model

• For designing systems consisting of systems

• For designing systems intended for continuous expansion

• A package introduces model encapsulation – reference to package elements is done
using a full path i.e. containing the name of the package

When not to use?
• If the model contains circular dependencies

2016 Embedded Systems Software Engineering 9

Package diagram
Package – graphical representation:

 equivalent to:

Notation:

package::Class A

package::Class B

+ public

– private

2016 Embedded Systems Software Engineering 10

Package
+ Class A
– Class B

Package

Class A Class B

Package diagram

Access to package elements is possible by different types of
dependencies:

2016 Embedded Systems Software Engineering 11

Package 1

Class A

Package 2

Class B

<<import>>

• <<import>> provides access in class A to elements of
class B. Package 1 can use class B without giving a path
to package 2. Subsequent import also provides access
to class B (equivalent to public inheritance)

• <<access>> similarly to the import but the next access
does not provide access to class B (equivalent to private
inheritance)

• <<merge>> enables connecting class B to Package 1.
Rarely used and non-functional.

State machine diagram

State machine diagram – diagram consisting of elements
representing object states. Events appearing in a system
activate transitions between states and the machine itself
verifies conditions fulfilling of which is necessary to perform
a specific transition.

2016 Embedded Systems Software Engineering 12

State machine diagram

State machine elements:
• state – moment in the life cycle of an object, in which certain

conditions are met, the object performs certain actions and expects
events

• event – an atomic process or activity which may influence the object
state

• action – an atomic operation execution

• activity – operation executed by an object in some state until it is
interrupted by an event

2016 Embedded Systems Software Engineering 13

State machine diagram

State machine elements:
• state transistion – relationship between two states of an object.

Object may change a state in reaction to an event and if some
conditions are fulfilled.

• state machine – abstract way of describing the behavior of system
objects, their interactions in case of specific events. A graphical
interpretation of a state machine is the state transistion diagram.

2016 Embedded Systems Software Engineering 14

State machine diagram

State machines are divided into:

• Protocol state machines
Describe what is happening with a selected object, i.e. they depict transitions
between object states.

• Behavior state machines
Describe transitions between states of many objects and explain how they affect
the status of the system.

2016 Embedded Systems Software Engineering 15

State machine diagram

Protocol state machine
• Not all transitions are included in the machine but only those which

cause transitions of an object into another state. Similarly, the machine
does not contain operations declared in classes which do not change
object state.

• Machine description mostly contains of a series of states and
transitions between states relating to a given object.

2016 Embedded Systems Software Engineering 16

State machine diagram

Protocol state machine

Notation:
[initial_condition] operation_name/ [end_condition]

Example:

2016 Embedded Systems Software Engineering 17

ON OFF

Switch off/

Switch on/ initial
state

final
state

state

transistion

event

State machine diagram

Behavior state machine
Describes transitions between object states in context of the behavior of
the system. Therefore the machine takes into account the concept of an
event, a condition and actions.

Notation:
[event] [guard condition][/action]

2016 Embedded Systems Software Engineering 18

State machine diagram

Kinds of events: [event] [guard condition][/action]

• Call event

Occurring when an operation should be performed

operation_name (parameter list)

• Signal event

2016 Embedded Systems Software Engineering 19

<<signal>>
Mouse

pos: Point

<<signal>>
MouseDown

btn: Button

<<signal>>
MouseUp

btn: Button

<<signal>>
MouseMove

<<signal>>
MouseRoll

dist: Point

State machine diagram

Kinds of events: [event] [guard condition][/action]

•Change event

Occurring if a condition is met:

when condition_expression

•Time event occurring:
– after some time interval

 after time_expression

– in some time moment

 when time_expression

2016 Embedded Systems Software Engineering 20

State machine diagram

Guard condition: [event] [guard condition][/action]

• Boolean expression containing:
– triggered event parameters

– object properties and states

– when an object is in some state(“in” state name)

• Guard condition is checked “after” triggering an event,
and “before” firing a state transition

2016 Embedded Systems Software Engineering 21

State machine diagram

Action: [event] [[condition]][/action]

• A sequence of operation calls sequentially executed

• Operations are separated with semicolons

• Operation arguments can use triggered event parameters

2016 Embedded Systems Software Engineering 22

State machine diagram

State diagram – a graph corresponding to a state machine
• refers to an object

• describes the behavior of an object at a finite number of states and
transitions between them

• diagram contains states connected by transition arrows

• transitions between states is triggered by asynchronous events

2016 Embedded Systems Software Engineering 23

State machine diagram

State diagram (states+transitions)
State – moment in the life cycle of an object in which a certain condition is
met. Each state has its own name. Notation:

 [event] [[condition]][/action]

describes one state.

Every state, beside its name, also contains actions describing going into
and out of the given state:

action-label / action

2016 Embedded Systems Software Engineering 24

State machine diagram

State diagram (states+transitions)
State – graphical representation:

i.e.

entry / print ‘action in progress’ / begin action

exit / end action / print ‘done’

2016 Embedded Systems Software Engineering 25

state_name
+ entry / action1
+ do / action2
+ exit / action3

rounded edges

State machine diagram

State diagram (states+transitions)

State – actions:

• entry – action performed once, when the object adopts to a given state

• do – action still performed when the object remains in a given state

• event – action taken with the moment of a specific event occurring

• include – action of calling a nested state machine

• exit – action performed once, when the object leaves a given state

2016 Embedded Systems Software Engineering 26

State machine diagram

State diagram (states+transitions)
State – properties:

• each action may call a new event

• number of states is unlimited for each object

• number of states in a diagram can be very large and equals:

 number_of_machines * number_of_objects *
number_of_states_of_each_object

• a state can be understood as a time period in which an object performs actions
or waits for an event

2016 Embedded Systems Software Engineering 27

State machine diagram

State diagram (states+transitions)
Transition

Transitions connect states together. They define events and conditions
which must be met so that an object can change its state.

Notation:

trigger [guard condition] / action ^ event

Example:

2016 Embedded Systems Software Engineering 28

OFF ON
read [temp <22 ° C] OFF = false ^ turn on the power

State machine diagram
State diagram (states+transitions)
Transition

trigger [guard condition] / action ^ event
• trigger – event which may cause a transition, as long as conditions are met
• guard condition – conditions which must be met for a transition to occur
• action – operations carried out undivided during a transition (refers to the

diagram – e.g. "Disable state")
• event – event which is sent during a transition (refers to the system – e.g.

“Turn off heater")

 2016 Embedded Systems Software Engineering 29

State machine diagram

Complex states
In the simplest case the possibility of existence of substates is ignored.
However, in practice, an object may often appear in a number of substates,
meaning it has its own state machine.

It is the case, for example, in case of objects from databases, state of which
is modified from the outside by a number of customers and the objects
themselves change their internal state with each such operation.

2016 Embedded Systems Software Engineering 30

State machine diagram

Complex states
Input state is the initial state

Output state is the final state

2016 Embedded Systems Software Engineering 31

Object state

Input state
Output

state
Intermediate

states

State machine diagram

Pseudo states
Have their source in the complexity of transitions, which in general do not need to
be "one state to one state" but:

• fork:

• join:

2016 Embedded Systems Software Engineering 32

state1

state2 state3

state3

state1 state2

State machine diagram

Pseudo states
•are abstract entities in the state machine diagram

•are more than transitions but not states

Examples:

 initial state point of destruction

 decision

 end state node

2016 Embedded Systems Software Engineering 33

State machine diagram

Internal transition compartment
• State does not change

• It is not a reverse transition (entry and exit operations are not
performed)

2016 Embedded Systems Software Engineering 34

State of the base
+ entry / read
+ exit / write
+ do / export

Format change

State machine diagram

Parallel states

2016 Embedded Systems Software Engineering 35

State11

State21 State22

State12

Synchronization
beam

State machine diagram

Concurrent activities

2016 Embedded Systems Software Engineering 36

Object1 Object2 Object3

Activity21 Activity11

Activity12

Activity31

Activity32

State machine diagram

Example state machine (voltage stabilizer)

2016 Embedded Systems Software Engineering 37

RESET
Check [VIN < 5] / VUP

UP DOWN

Check [VIN > 5] / VDOWN

WAIT

Check [VIN ==5] /
 WAIT

Check [VIN > 5] / VDOWN Check [VIN < 5] / VUP
POWER / OFF

POWER / OFF

POWER / OFF

State machine diagram

Example state machine (vacuum cleaner with a thermostat)

2016 Embedded Systems Software Engineering 38

OFF

ON

check [temp > 70oC] /
ON = false ^ light blink

Turn on [temp < 70oC] /
OFF = false ^ light on

BLINK

check [temp < 40oC] /
BLINK = false ^ light
OFF

Turn off / ON = false ^
light off

State machine diagram

How to start creating a state machine:
• Choosing a state machine (protocol or behavior)

• Defining states

• Ordering states and substates according to a specific hierarchy

• Connecting states with transitions

• Defining pseudo states based on transitions

2016 Embedded Systems Software Engineering 39

Bibliography
[1] Grady Booch, James Rumbaugh, Ivar Jacobson, Unified Modeling User Guide (book, pdf)

[2] http://brasil.cel.agh.edu.pl/~09sbfraczek/diagram-klas%2c1%2c11.html

[3] http://brasil.cel.agh.edu.pl/~09sbfraczek/diagram-pakietow%2c1%2c18.html

[4] http://brasil.cel.agh.edu.pl/~09sbfraczek/diagram-maszyny-stanowej%2c1%2c19.html

[5] Jarosław Kuchta, State transistion modeling, Embedded Systems Software Engineering, 2015

2016 Embedded Systems Software Engineering 40

http://brasil.cel.agh.edu.pl/~09sbfraczek/diagram-klas,1,11.html
http://brasil.cel.agh.edu.pl/~09sbfraczek/diagram-klas,1,11.html
http://brasil.cel.agh.edu.pl/~09sbfraczek/diagram-klas,1,11.html
http://brasil.cel.agh.edu.pl/~09sbfraczek/diagram-pakietow,1,18.html
http://brasil.cel.agh.edu.pl/~09sbfraczek/diagram-pakietow,1,18.html
http://brasil.cel.agh.edu.pl/~09sbfraczek/diagram-pakietow,1,18.html
http://brasil.cel.agh.edu.pl/~09sbfraczek/diagram-maszyny-stanowej,1,19.html
http://brasil.cel.agh.edu.pl/~09sbfraczek/diagram-maszyny-stanowej,1,19.html
http://brasil.cel.agh.edu.pl/~09sbfraczek/diagram-maszyny-stanowej,1,19.html
http://brasil.cel.agh.edu.pl/~09sbfraczek/diagram-maszyny-stanowej,1,19.html
http://brasil.cel.agh.edu.pl/~09sbfraczek/diagram-maszyny-stanowej,1,19.html

