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In the previous lecture 

1. Interfaces 

2. Package diagrams 

3. State machine 

4. States, transitions 

5. Concurrent states, pseudo states 

 

2016 Embedded Systems Software Engineering 2 



Plan of the lecture 

1. Deployment diagram 

2. Modeling Use Cases 

3. Defining actors and Use Cases 

4. Application logic design 

5. Problem of attacks which keep the functionality of the 
system 

6. Data Interfaces 
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Deployment diagram 

Deployment diagram – is used for modeling large systems. It is 

particularly important for the design issues of embedded systems, 
because it represents the relationship between the software layer 
(artifacts) and the equipment (nodes). 

2016 Embedded Systems Software Engineering 4 



Deployment diagram 

Deployment diagram 
1. Software – represented by: 
• artifacts – compiled and executable components 

• data 

• libraries 

2. Hardware – presented with nodes which represent 
devices. The nodes are connected with rails/paths 
representing a defined way of communicating. 
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Deployment diagram 

Deployment diagram – example  
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Use case modeling 

Use case diagram 
“case” – means case when a system is used to fulfill user’s requirements 

“use case” – an abstract unit of functionality that system delivers to the 
user. Use cases consider analysis of all parts of a system which does not 
take into account a non-functional requirements of the system. 

“actor” – a role that human, device or another system plays when 
interacting with the system 
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Use case modeling 
Examples: 
1. Actors: 
• humans (operators, supervisors) who interact with a system  
• internal parts of a system – they can change a system’s state but their states 

can’t be changed by the system 
• external systems 

2. Use cases: 
• calibration 
• measures 
• calibration 
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Use case modeling 

Recognizing actors: 

• Who will use the system and its functionality? 

• Who should supervise the system? 

• What resources does the system posses (devices/people) 

• Which systems does the system communicate with? 

• Who or what gets the results of the work of the system? 
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Use case modeling 

Recognizing Use Cases: 

• Analysis of system functions from user’s point of view 

• Should the actor be informed about events in the system? 

• Does the actor need to generate information in the system? 

• What is the input and output data of the system? 

• System bottle necks 
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Use case modeling 

Use case modeling – notation: 
 

 a)        or                                               Use Case 
 

 

 

 b)                           actor 

 

 

 c)             system name 

2016 Embedded Systems Software Engineering 11 

stay stay 

user 

Management System 

 Internals of the system 



Use case modeling 

Use case modeling – notation: 
 

 a)                         reuse block (separate  
     or used by several Use Cases) 

  

 b)     interaction 

     

 c)    relation (extend or include) between 
     Use Cases or between  
     a Use Case and a reuse block 
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Internals of the system 

<<extend>> 



Use case modeling 

<<extend>> and <<include>> 
Are relationships which determine the order of defining Use Cases. 
 

Example 1 <<include>>: case C1 is first in the sequence, meaning it’s the base one: 

 

 

 

   C1 always turns on C2 

This is a basic sequence, which always occurs. 
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<<include>> 



Use case modeling 

<<extend>> and <<include>> 
 
 

Example 2 <<extend>>: case C1 is first in the sequence, meaning it’s the base one: 

 

 

 

          C1 is sometimes extended with C2 

This is an optional sequence, which doesn’t always occur. 
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Use case modeling 

Examples 
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Monitoring Rising alarm 
<<extend>> 



Use case modeling 

Example 
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Use case modeling 

Many actors in one use case 
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Use case modeling 

Actor hierarchy 
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Use case modeling 

Relationships example 
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Use case modeling 

Relationships example 
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Use case modeling 

Use case kinds 
1. Overview / detailed 
• only generic use cases 

• specific use cases with interactions 

2. Essential / real 
• used in analysis 

• used in design 
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Use case modeling 

Scenario 
Use Case modeling requires an analysis of possible scenarios of events. 
During such an analysis the following should be taken into account: 

• main event sequence 

• sub-activities 

• exceptional situations 
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Use case modeling 

Example scenario 

 

„Order placement” 
1. Customer authentication 

2. Order negotiation 

3. Order authorization 
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Use case modeling 

Scenario – interaction diagram 
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Use case modeling 

Use case model usage: 

• application logic design 

• user interface design 

• testing 
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Use case modeling 

Application logic design – genesis 

LOGIC 

A business process example – ordering  

 
A broken business process example 
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Application logic design 

A broken business process example: 
• Early loyalty points without paying (free items) 

• Manipulation of business process 

• Theft, fraud, financial loss 

Logic Defect: 
A defect that exposes a business process to manipulation from attacker who 
causes undesirable results of process sequences without disrupting 
application continuity. 
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Application logic design 

Application logic (AL) 
„Design components of a system with a steps procedure of executing 
business processes in a piece of software”. 

1. Class model completion and refinement 

2. Fitting AL to system architecture 

3. Joining classes, interfaces and components 

4. Component organization 
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Application logic design 

Ad. 1. Class model completion 
• Container class addition 

– entity management (adding, ordering, remove) 

– cross-entity data validation  

– aggregation 

• Class hierarchy complement (find missing classes) 
– generalization 

– specialization 
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Application logic design 
Ad. 1. Class model refinement 
• Entity classes  
• Entity identification 

– int or GUID 

• Properties or fields (attributes) 
– read-only or read-write? 
– write-only? write-once? 
– const? 
– derived properties – expressions 

• Feature visibility 
– private, protected, public 
– internal? friend? 
– class, static 
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Application logic design 

Properties refinement: 
• General types (integer, float) 

• Specific types (int32/int64, single/double) 

• Fixed-point real numbers (currency, decimal) 

• Date and time? 

• Collections(multi-value properties) 
– multiplicity: [*], [n..*] 

– capacity – does not guarantee minimal item count 

– list, dictionary (indexed access) 

– vector list or linked list(access / modification efficiency) 
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Application logic design 

Operations refinement 
• Operations vs. functions (<<realize>> relationship) 

• Function parameters 

– in, out, inout 

– default values 

– overloaded functions 

• Result types 

– two or more result values – out parameters needed 

• Operation kind: regular, virtual, abstract, (class, static), (new, override) 
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Application logic design 

Application logic considering system architecture 
• Single application logic model? 

• Dividing logic to layers 

• Complexity management (packages) 
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Application logic design 

Interfaces (as data type, not user interface) 

Multiple interfaces and multiple inheritance 
• multiple inheritance available only in few languages (e.g. C++) 

• multiple class parents implemented as interfaces 

• each interface must be implemented in each class separately 

• implementation via delegation 
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Application logic design 

Classes – interfaces – components  
• Classes at the lower infrastructure layer 

• Components at the higher layer 

• Implemented component = library (DLL) 

• Components joined through interfaces 

• Interface implementation in a class 

• At least one implementing class in a component 
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Application logic design 

Component diagram 
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Application logic design 

Assigning classes to components 
Component “Orders” 

– class “Order Manager” 
– implement interface “Orders” 

– class “Order” 

– class “Article” -> to component “Storage” 

– class “Customer” -> to component “Contractors” 
– a new component is needed! 
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Application logic design 

Better component diagram 
 

 

 

 
 

2016 Embedded Systems Software Engineering 38 

Sales 

Orders 

orders invoices 

Accounting 

Storage Contractors 

contractors storage 



Use case modeling 

Use case model usage: 
• application logic design 
• user interface design 

• Layout 
• Window navigation diagram 
• Aesthetics 
• Consistency 
• Content 

• testing 
• Methods 
• V-model 
• Maintenance 
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