
Lecture 5
Use case modeling and Application

logic design

ES Software Engineering

Embedded Systems Software Engineering 2016 1

In the previous lecture

1. Interfaces

2. Package diagrams

3. State machine

4. States, transitions

5. Concurrent states, pseudo states

2016 Embedded Systems Software Engineering 2

Plan of the lecture

1. Deployment diagram

2. Modeling Use Cases

3. Defining actors and Use Cases

4. Application logic design

5. Problem of attacks which keep the functionality of the
system

6. Data Interfaces

2016 Embedded Systems Software Engineering 3

Deployment diagram

Deployment diagram – is used for modeling large systems. It is

particularly important for the design issues of embedded systems,
because it represents the relationship between the software layer
(artifacts) and the equipment (nodes).

2016 Embedded Systems Software Engineering 4

Deployment diagram

Deployment diagram
1. Software – represented by:
• artifacts – compiled and executable components

• data

• libraries

2. Hardware – presented with nodes which represent
devices. The nodes are connected with rails/paths
representing a defined way of communicating.

2016 Embedded Systems Software Engineering 5

Deployment diagram

Deployment diagram – example

2016 Embedded Systems Software Engineering 6

UserComputer:PC

Server:HOST

Device:OUT

Access
Program

Queuing
Program

Executive
Program

message paths

Use case modeling

Use case diagram
“case” – means case when a system is used to fulfill user’s requirements

“use case” – an abstract unit of functionality that system delivers to the
user. Use cases consider analysis of all parts of a system which does not
take into account a non-functional requirements of the system.

“actor” – a role that human, device or another system plays when
interacting with the system

2016 Embedded Systems Software Engineering 7

Use case modeling
Examples:
1. Actors:
• humans (operators, supervisors) who interact with a system
• internal parts of a system – they can change a system’s state but their states

can’t be changed by the system
• external systems

2. Use cases:
• calibration
• measures
• calibration

2016 Embedded Systems Software Engineering 8

Use case modeling

Recognizing actors:

• Who will use the system and its functionality?

• Who should supervise the system?

• What resources does the system posses (devices/people)

• Which systems does the system communicate with?

• Who or what gets the results of the work of the system?

2016 Embedded Systems Software Engineering 9

Use case modeling

Recognizing Use Cases:

• Analysis of system functions from user’s point of view

• Should the actor be informed about events in the system?

• Does the actor need to generate information in the system?

• What is the input and output data of the system?

• System bottle necks

2016 Embedded Systems Software Engineering 10

Use case modeling

Use case modeling – notation:

 a) or Use Case

 b) actor

 c) system name

2016 Embedded Systems Software Engineering 11

stay stay

user

Management System

 Internals of the system

Use case modeling

Use case modeling – notation:

 a) reuse block (separate
 or used by several Use Cases)

 b) interaction

 c) relation (extend or include) between
 Use Cases or between
 a Use Case and a reuse block

2016 Embedded Systems Software Engineering 12

Internals of the system

<<extend>>

Use case modeling

<<extend>> and <<include>>
Are relationships which determine the order of defining Use Cases.

Example 1 <<include>>: case C1 is first in the sequence, meaning it’s the base one:

 C1 always turns on C2

This is a basic sequence, which always occurs.

2016 Embedded Systems Software Engineering 13

C1 C2
<<include>>

Use case modeling

<<extend>> and <<include>>

Example 2 <<extend>>: case C1 is first in the sequence, meaning it’s the base one:

 C1 is sometimes extended with C2

This is an optional sequence, which doesn’t always occur.

2016 Embedded Systems Software Engineering 14

C1 C2
<<extend>>

Use case modeling

Examples

2016 Embedded Systems Software Engineering 15

Sending
message

Releasing
buffer

<<extend>>

Monitoring Measuring
<<include>>

Monitoring Rising alarm
<<extend>>

Use case modeling

Example

2016 Embedded Systems Software Engineering 16

operator

Measures

Operating

Calibration

supervisor

Use case modeling

Many actors in one use case

2016 Embedded Systems Software Engineering 17

Operation

supervisor

player

Game
session

2

operator

Use case modeling

Actor hierarchy

2016 Embedded Systems Software Engineering 18

User

Operator Supervisor

Use case modeling

Relationships example

2016 Embedded Systems Software Engineering 19

User

User

Login Login

User

Login

Admin

Use case modeling

Relationships example

2016 Embedded Systems Software Engineering 20

User
management

Admin Account
creation

Account
edition

Password
reset

Admin

Account
creation

Account
edition

Password
reset

Use case modeling

Use case kinds
1. Overview / detailed
• only generic use cases

• specific use cases with interactions

2. Essential / real
• used in analysis

• used in design

2016 Embedded Systems Software Engineering 21

Use case modeling

Scenario
Use Case modeling requires an analysis of possible scenarios of events.
During such an analysis the following should be taken into account:

• main event sequence

• sub-activities

• exceptional situations

2016 Embedded Systems Software Engineering 22

Use case modeling

Example scenario

„Order placement”
1. Customer authentication

2. Order negotiation

3. Order authorization

2016 Embedded Systems Software Engineering 23

Use case modeling

Scenario – interaction diagram

2016 Embedded Systems Software Engineering 24

User

Control
Panel

Active
directory

Controller

1: Login() 2: ok:=Authorization()

3: ok:=Invalid_log()

5: Menu
4: Get Status ()

Use case modeling

Use case model usage:

• application logic design

• user interface design

• testing

2016 Embedded Systems Software Engineering 25

Use case modeling

Application logic design – genesis

LOGIC

A business process example – ordering

A broken business process example

2016 Embedded Systems Software Engineering 26

Log in
Find

items
Add

items
Verify
order

Define
payment

Transaction
success

Loyalty
points

Log out

Log in
Find

items
Add

items
Verify
order

Define
payment

Transaction
success

Loyalty
points

Log out
*

Application logic design

A broken business process example:
• Early loyalty points without paying (free items)

• Manipulation of business process

• Theft, fraud, financial loss

Logic Defect:
A defect that exposes a business process to manipulation from attacker who
causes undesirable results of process sequences without disrupting
application continuity.

2016 Embedded Systems Software Engineering 27

Application logic design

Application logic (AL)
„Design components of a system with a steps procedure of executing
business processes in a piece of software”.

1. Class model completion and refinement

2. Fitting AL to system architecture

3. Joining classes, interfaces and components

4. Component organization

2016 Embedded Systems Software Engineering 28

Abstraction level of a model

Application logic design

Ad. 1. Class model completion
• Container class addition

– entity management (adding, ordering, remove)

– cross-entity data validation

– aggregation

• Class hierarchy complement (find missing classes)
– generalization

– specialization

2016 Embedded Systems Software Engineering 29

Application logic design
Ad. 1. Class model refinement
• Entity classes
• Entity identification

– int or GUID

• Properties or fields (attributes)
– read-only or read-write?
– write-only? write-once?
– const?
– derived properties – expressions

• Feature visibility
– private, protected, public
– internal? friend?
– class, static

2016 Embedded Systems Software Engineering 30

Application logic design

Properties refinement:
• General types (integer, float)

• Specific types (int32/int64, single/double)

• Fixed-point real numbers (currency, decimal)

• Date and time?

• Collections(multi-value properties)
– multiplicity: [*], [n..*]

– capacity – does not guarantee minimal item count

– list, dictionary (indexed access)

– vector list or linked list(access / modification efficiency)

2016 Embedded Systems Software Engineering 31

Application logic design

Operations refinement
• Operations vs. functions (<<realize>> relationship)

• Function parameters

– in, out, inout

– default values

– overloaded functions

• Result types

– two or more result values – out parameters needed

• Operation kind: regular, virtual, abstract, (class, static), (new, override)

2016 Embedded Systems Software Engineering 32

Application logic design

Application logic considering system architecture
• Single application logic model?

• Dividing logic to layers

• Complexity management (packages)

2016 Embedded Systems Software Engineering 33

Application logic design

Interfaces (as data type, not user interface)

Multiple interfaces and multiple inheritance
• multiple inheritance available only in few languages (e.g. C++)

• multiple class parents implemented as interfaces

• each interface must be implemented in each class separately

• implementation via delegation

 2016 Embedded Systems Software Engineering 34

Application logic design

Classes – interfaces – components
• Classes at the lower infrastructure layer

• Components at the higher layer

• Implemented component = library (DLL)

• Components joined through interfaces

• Interface implementation in a class

• At least one implementing class in a component

2016 Embedded Systems Software Engineering 35

Application logic design

Component diagram

2016 Embedded Systems Software Engineering 36

Sales

Orders

orders invoices

Accounting

Storage

storage

Application logic design

Assigning classes to components
Component “Orders”

– class “Order Manager”
– implement interface “Orders”

– class “Order”

– class “Article” -> to component “Storage”

– class “Customer” -> to component “Contractors”
– a new component is needed!

2016 Embedded Systems Software Engineering 37

Application logic design

Better component diagram

2016 Embedded Systems Software Engineering 38

Sales

Orders

orders invoices

Accounting

Storage Contractors

contractors storage

Use case modeling

Use case model usage:
• application logic design
• user interface design

• Layout
• Window navigation diagram
• Aesthetics
• Consistency
• Content

• testing
• Methods
• V-model
• Maintenance

2016 Embedded Systems Software Engineering 39

Bibliography
[1] http://brasil.cel.agh.edu.pl/~09sbfraczek/diagram-wdrozenia%2c1%2c20.html

[2] Jarosław Kuchta, Use case modeling, Embedded Systems Software Engineering, 2015

[3] Grady Boch, James Rumbaugh, Ivar Jacobson, Unified Modeling User Guide (book, pdf)

[4] http://www.slideshare.net/RafalLos/defying-logic-business-logic-testing-with-automation

[5] Jarosław Kuchta, Application logic design, Embedded Systems Software Engineering, 2015

[6] Roger S. Pressman: Software Engineering. A Practitioner's Approach (book, PDF)

[7] Dennis A., Wixom B.H., TegardenD., Systems Analysis & Design. An Object-Oriented Approach with UML,
John Wiley and Sons, USA, 2002

2016 Embedded Systems Software Engineering 40

http://brasil.cel.agh.edu.pl/~09sbfraczek/diagram-wdrozenia,1,20.html
http://brasil.cel.agh.edu.pl/~09sbfraczek/diagram-wdrozenia,1,20.html
http://brasil.cel.agh.edu.pl/~09sbfraczek/diagram-wdrozenia,1,20.html
http://www.slideshare.net/RafalLos/defying-logic-business-logic-testing-with-automation
http://www.slideshare.net/RafalLos/defying-logic-business-logic-testing-with-automation
http://www.slideshare.net/RafalLos/defying-logic-business-logic-testing-with-automation
http://www.slideshare.net/RafalLos/defying-logic-business-logic-testing-with-automation
http://www.slideshare.net/RafalLos/defying-logic-business-logic-testing-with-automation
http://www.slideshare.net/RafalLos/defying-logic-business-logic-testing-with-automation
http://www.slideshare.net/RafalLos/defying-logic-business-logic-testing-with-automation
http://www.slideshare.net/RafalLos/defying-logic-business-logic-testing-with-automation
http://www.slideshare.net/RafalLos/defying-logic-business-logic-testing-with-automation
http://www.slideshare.net/RafalLos/defying-logic-business-logic-testing-with-automation
http://www.slideshare.net/RafalLos/defying-logic-business-logic-testing-with-automation
http://www.slideshare.net/RafalLos/defying-logic-business-logic-testing-with-automation
http://www.slideshare.net/RafalLos/defying-logic-business-logic-testing-with-automation

