
Lecture 8
Tools for an embedded system

developer

ES Software Engineering

Embedded Systems Software Engineering 2016 1

In the previous lecture

1. System & data architecture design

2. Agile programming

3. Open Source

4. Software Licences

2016 Embedded Systems Software Engineering 2

Plan of the lecture

1. Porting an embedded system

2. Version control systems

3. Hardware emulators

4. Embedded Systems market in Poland

2016 Embedded Systems Software Engineering 3

Porting of a system

Software vs. hardware

2016 Embedded Systems Software Engineering 4

Desktop processors ES processors

Operational
system

processor

processor

processor

processor
processor

processor

System’s
port

processor

System’s
port

processor

System’s
port

processor

Porting of a system
I. Preparing a system port should be started with familiarizing oneself with:

1. Hardware platform documentation (i.e. mainly the processor documentation)

2. Operating system documentation

Preparing the port is about adapting the system architecture (software) to the
hardware architecture (CPU).

II. The first practical steps are:

1. Compiling a chosen system port (made available to a different hardware
platform)

2. Configuring a hardware emulator – adapting it to the processor architecture
to which the port is being prepared

2016 Embedded Systems Software Engineering 5

Porting of a system

III. Controlling clocks
Modern processors for embedded systems (e.g. ARM) have multiple clocks responsible for the operation
of processor modules (memory management units, peripheral circuits).

The first communication with the ported system (e.g. via UART) requires correctly configured clocks and a
PLL loop through appropriate entries in registers (see documentation).

PLL loop configuration:

2016 Embedded Systems Software Engineering 6

Phase
frequency
detector

Low pass
filter

VCO

/k

fin
fout = k*fin

Porting of a system

IV. Preparing assembly code to MMU and macros for handling the
Cache.

Using MMU significantly speeds up the processor.

Assembly code and macros can usually be borrowed from system ports, for
processors of a similar architecture but an older version. This code requires only
minor modifications for adapting it to a new architecture.

The main objective of a developer is to define an offset and a number of memory
pages which make it possible to map a virtual memory basing on the available
physical memory resources. This requires handling the TLB mechanism.

2016 Embedded Systems Software Engineering 7

Porting of a system
V. Handling interrupts
It goes down to handling a mechanism for calling system functions depending on
register contents, which are set by an application initiating interrupts.
Developer must become familiar with the mechanism for initiating interrupts by
the operating system and the interrupt handling mechanism in the processor.
VI. Handling the watchdog
The idea of a watchdog is that it sets the counter to a specific value, which is then
decremented when measured by an independent processor clock. After reaching a
certain minimum value – a specified operation is performed (interrupt initiation,
processor reset etc.).
The developer’s task is to determine the initial/final value, to define the clock and
actions. As a rule, each of these steps is about setting appropriate entries in
registries during a system startup.

2016 Embedded Systems Software Engineering 8

Porting of a system

VI. Implementation of drivers

The final port of an embedded system should have drivers available
for typical communication protocols (I2C, SPI, Ethernet etc.). Each
processor has a set of communication devices compliant with these
protocols, but handling them in the system requires implementing
drivers basing on the documentation of processor transceivers and a
methodology of defining drivers planned for the operating system.

It is one of the most time-consuming and difficult tasks.

2016 Embedded Systems Software Engineering 9

Porting of a system

VII. Running tests

Many operating systems have a set of tests which, started in a
permanent cycle, makes it possible to continuously control the
operation of the port and the coherence of the system during
subsequent modifications. The tests verify the correct operation of
drivers, macros for memory handling, register entries compliance etc.
Running all available tests or defining own tests is a separate project
task.

2016 Embedded Systems Software Engineering 10

Version control systems
Working on large projects requires using version control systems. Their
task is to track source code changes and linking code modified by many
developers at different moments.

Version control systems:

1. Local – makes it possible to write data on a local computer

• RCS

• GNU Source Code Control System

• SCCS

2016 Embedded Systems Software Engineering 11

Version control systems
2. Distributed – based on the P2P architecture
• Git
• GNU Arch
• svk
• Bazaar
• BitKeeper
3. Centralized – based on the client-server architecture
• CVS
• GNU CSSC
• Supervision – SVN
• Visual Studio Team Foundation Server

2016 Embedded Systems Software Engineering 12

Version control systems

Functionalities of version control systems:

RCS -> CVS -> SVN
RCS operates on single files of a local computer, and the history of the
changes made is stored in a file named plik.v

The system, because of being used on a local machine (i.e. by a single
user) does not offer any additional functionalities such as controlling
changes made by multiple users.

2016 Embedded Systems Software Engineering 13

Version control systems
Functionalities of version control systems:

RCS -> CVS -> SVN
• CVS was implemented as an extension of the RCS functionality, which is why it uses

the same history format (plik.v)

• It allows multiple users to work on one file

• Supports creating branches

• Features a mechanism for resolving conflicts

Limitations:

• Metadata is not versioned

• When working on multiple files – approving changes is not a separate operation

• It does not support renaming files in the repository

2016 Embedded Systems Software Engineering 14

Version control systems
Functionalities of version control systems:

RCS -> CVS -> SVN
• Features a history of directory and file name changes, file locations in directories

and properties of files and directories
• Changes in several files/folders are separate operations – in case of breaking a

network connection – changes are not saved unless all changes are saved
• The functionality of user authentication and authorization, data compression, using

the HTTP protocol
• Additional server (regardless of HTTP) – e.g. as a separate daemon
• Branches are defined as copies, which occupy little space in the permanent storage
• Size of data being transferred depends on changes made and not the size of the file

2016 Embedded Systems Software Engineering 15

Hardware emulators
Emulator – computer program executed in a single computer system and
duplicating the operation of another computer system.

Emulator parts:

• CPU Emulator – the most complicated part of the program

• Memory emulator

• Input output devices emulator

The main problem of emulators is the operating speed:

• Adjusting emulation speed to the required minimal speed of operating
applications

• High-frequency processors emulation made in a computer system running
at a slightly greater frequency

2016 Embedded Systems Software Engineering 16

Hardware emulators

GDB Emulator – text emulator reading binary files

• monitoring and modifying internal variables

• ability to call functions regardless of the programs

• remote mode

• reversible debugging

• GUI – Xxgdb, KDbg, GDBtk

• compatible with Dev-C++, Qt Creator, Lazarus, Eclipse, VisualStudio

2016 Embedded Systems Software Engineering 17

Hardware emulators
QEMU Emulator
• Running multiple operating systems
• Is fast
• Supports multiple CPU architectures
• Two operating modes: user and system
• Network card emulation
• Handling snapshots
• Works with a VNC (possibility of remote operation)
• Virtual server
• Supports USB tablets
• Dedicated for Linux/UNIX systems – partial support for MS Windows
• No accelerators such as VMware or VirtualBox

2016 Embedded Systems Software Engineering 18

Project management tools

Project management tools on the basis of Redmine
Redmine – free and open source tool used for managing multiple projects

• Calendar, charts, repository, diff viewer, wikis, forums

• Visual representations

• Compatible with version control systems (SVN, CVS, Git etc.)

• Role-based access control

• E-mail notifications

• Fields for issues, time-entries, projects, users

• Multiple databases

2016 Embedded Systems Software Engineering 19

ES market in Poland
The most important applications using a single board computers in Poland [5]:

2016 Embedded Systems Software Engineering 20

0%

5%

10%

15%

20%

25%

30%

ES market in Poland
Overview of industries which are the largest customers of computers for
embedded systems [5]:

2016 Embedded Systems Software Engineering 21

0%

5%

10%

15%

20%

25%

Bibliography
[1] https://en.wikipedia.org/wiki/Version_control

[2] https://en.wikipedia.org/wiki/Redmine

[3] https://en.wikipedia.org/wiki/GNU_Debugger

[4] https://en.wikipedia.org/wiki/QEMU

[5] http://elektronikab2b.pl/raporty/9585-polski-rynek-komputerow-do-systemow-
embedded#.V22Q7_mLSM8

 2016 Embedded Systems Software Engineering 22

https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Redmine
https://en.wikipedia.org/wiki/GNU_Debugger
https://en.wikipedia.org/wiki/QEMU
http://elektronikab2b.pl/raporty/9585-polski-rynek-komputerow-do-systemow-embedded.V22Q7_mLSM8
http://elektronikab2b.pl/raporty/9585-polski-rynek-komputerow-do-systemow-embedded.V22Q7_mLSM8
http://elektronikab2b.pl/raporty/9585-polski-rynek-komputerow-do-systemow-embedded.V22Q7_mLSM8
http://elektronikab2b.pl/raporty/9585-polski-rynek-komputerow-do-systemow-embedded.V22Q7_mLSM8
http://elektronikab2b.pl/raporty/9585-polski-rynek-komputerow-do-systemow-embedded.V22Q7_mLSM8
http://elektronikab2b.pl/raporty/9585-polski-rynek-komputerow-do-systemow-embedded.V22Q7_mLSM8
http://elektronikab2b.pl/raporty/9585-polski-rynek-komputerow-do-systemow-embedded.V22Q7_mLSM8
http://elektronikab2b.pl/raporty/9585-polski-rynek-komputerow-do-systemow-embedded.V22Q7_mLSM8
http://elektronikab2b.pl/raporty/9585-polski-rynek-komputerow-do-systemow-embedded.V22Q7_mLSM8
http://elektronikab2b.pl/raporty/9585-polski-rynek-komputerow-do-systemow-embedded.V22Q7_mLSM8
http://elektronikab2b.pl/raporty/9585-polski-rynek-komputerow-do-systemow-embedded.V22Q7_mLSM8
http://elektronikab2b.pl/raporty/9585-polski-rynek-komputerow-do-systemow-embedded.V22Q7_mLSM8
http://elektronikab2b.pl/raporty/9585-polski-rynek-komputerow-do-systemow-embedded.V22Q7_mLSM8

