
Operating Systems And Applications For
Embedded Systems

Managing Memory

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 1 / 19

Plan
Profiling and Tracing

Profling with top
Poor man’s profler

perf
perf
Confguring the kernel for perf
Building perf with the Yocto Project
Building perf with Buildroot
Profling with perf
perf user interfaces
OProfle and gprof
LTTng components
LTTng and the Yocto Project
LTTng and Buildroot
Callgrind
Helgrind
Using strace to show system calls

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 2 / 19

Kernel space memory layout
I The kernel itself, in other words, the code and data loaded from the kernel image file at

boot time. This is shown in the preceding code in the segments .text, .init, .data, and .bss.
The .init segment is freed once the kernel has completed initialization.

I Memory allocated through the slab allocator, which is used for kernel data structures of
various kinds. This includes allocations made using kmalloc(). They come from the region
marked lowmem.

I Memory allocated via vmalloc(), usually for larger chunks of memory than is available
through kmalloc(). These are in the vmalloc area.

I Mapping for device drivers to access registers and memory belonging to various bits of
hardware, which you can see by reading /proc/iomem. These come from the vmalloc area
but since they are mapped to physical memory that is outside of main system memory,
they do not take any real memory.

I Kernel modules, which are loaded into the area marked modules.
I Other low level allocations that are not tracked anywhere else.

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 3 / 19

User space memory layout I

Listing 1: Listing
1 #i n c l u d e <s t d i o . h>
2 #i n c l u d e <s t d l i b . h>
3 #i n c l u d e <s t r i n g . h>
4 #i n c l u d e <sy s / r e s o u r c e . h>
5 #d e f i n e BUFFER_SIZE (1024 ∗ 1024)
6 vo i d p r i n t _ p g f a u l t s (vo i d)
7 {
8 i n t r e t ;
9 s t r u c t ru sage usage ;
10 r e t = ge t r u s a g e (RUSAGE_SELF , &usage) ;
11 i f (r e t == −1) {
12 p e r r o r (" g e t r u s ag e ") ;
13 } e l s e {

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 4 / 19

User space memory layout II
14 p r i n t f ("Major page f a u l t s %l d \n" , usage . r u_ma j f l t) ;
15 p r i n t f ("Minor page f a u l t s %l d \n" , usage . r u_m in f l t) ;
16 }
17 }
18 i n t main (i n t argc , cha r ∗ a rgv [])
19 {
20 uns i gned char ∗p ;
21 p r i n t f (" I n i t i a l s t a t e \n") ;
22 p r i n t _ p g f a u l t s () ;
23 p = ma l l o c (BUFFER_SIZE) ;
24 p r i n t f (" A f t e r ma l l o c \n") ;
25 p r i n t _ p g f a u l t s () ;
26 memset (p , 0x42 , BUFFER_SIZE) ;
27 p r i n t f (" A f t e r memset\n") ;
28 p r i n t _ p g f a u l t s () ;

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 5 / 19

User space memory layout III
29 memset (p , 0x42 , BUFFER_SIZE) ;
30 p r i n t f (" A f t e r 2nd memset\n") ;
31 p r i n t _ p g f a u l t s () ;
32 r e t u r n 0 ;
33 }

Initial state
Major page faults 0
Minor page faults 172
After malloc
Major page faults 0
Minor page faults 186
After memset
Major page faults 0
Minor page faults 442
After 2nd memset

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 6 / 19

User space memory layout IV

Major page faults 0
Minor page faults 442

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 7 / 19

Process memory map

cat /proc/1/maps
00008000-0000e000 r-xp 00000000 00:0b 23281745 /sbin/init
00016000-00017000 rwxp 00006000 00:0b 23281745 /sbin/init
00017000-00038000 rwxp 00000000 00:00 0 [heap]
b6ded000-b6f1d000 r-xp 00000000 00:0b 23281695 /lib/libc-2.19.so
b6f1d000-b6f24000 —p 00130000 00:0b 23281695 /lib/libc-2.19.so
1. r = read
2. w = write
3. x = execute
4. s = shared
5. p = private (copy on write)

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 8 / 19

Swap

The idea of swapping is to reserve some storage where the kernel can place pages of memory
that are not mapped to a file, so that it can free up the memory for other uses. It increases the
effective size of physical memory by the size of the swap file. It is not a panacea: there is a cost
to copying pages to and from a swap file which becomes apparent on a system that has too
little real memory for the workload it is carrying and begins disk thrashing.

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 9 / 19

Swap to compressed memory (zram)

I CONFIG_SWAP
I CONFIG_CGROUP_MEM_RES_CTLR
I CONFIG_CGROUP_MEM_RES_CTLR_SWAP
I CONFIG_ZRAM

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 10 / 19

mtrace I

Listing 2: Listing
1 #i n c l u d e <mcheck . h>
2 #i n c l u d e <s t d l i b . h>
3 #i n c l u d e <s t d i o . h>
4 i n t main (i n t argc , cha r ∗ a rgv [])
5 {
6 i n t j ;
7 mtrace () ;
8 f o r (j = 0 ; j < 2 ; j++)
9 ma l l o c (1 0 0) ; /∗ Never f r e e d : a memory l e a k ∗/
10 c a l l o c (16 , 1 6) ; /∗ Never f r e e d : a memory l e a k ∗/
11 e x i t (EXIT_SUCCESS) ;
12 }

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 11 / 19

mtrace II

export MALLOC_TRACE=mtrace.log
./mtrace-example
mtrace mtrace-example mtrace.log
Memory not freed:
—————–
Address Size Caller
0x0000000001479460 0x64 at /home/chris/mtrace-example.c:11
0x00000000014794d0 0x64 at /home/chris/mtrace-example.c:11
0x0000000001479540 0x100 at /home/chris/mtrace-example.c:15

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 12 / 19

Valgrind I
1. memcheck: This is the default tool, and detects memory leaks and general misuse of

memory
2. cachegrind: This calculates the processor cache hit rate
3. callgrind: This calculates the cost of each function call
4. helgrind: This highlights misuse of the Pthread API, potential deadlocks, and race

conditions
5. DRD: This is another Pthread analysis tool
6. massif: This profiles usage of the heap and stack

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 13 / 19

Valgrind II
To find our memory leak, we need to use the default memcheck tool, with the option
--leakcheck=full to print out the lines where the leak was found:

valgrind --leak-check=full ./mtrace-example

==17235== Memcheck, a memory error detector
==17235== Copyright (C) 2002-2013, and GNU GPL’d, by Julian Seward et al.
==17235== Using Valgrind-3.10.0.SVN and LibVEX; rerun with -h for copyright info
==17235== Command: ./mtrace-example
==17235==
==17235==
==17235== HEAP SUMMARY:
==17235== in use at exit: 456 bytes in 3 blocks
==17235== total heap usage: 3 allocs, 0 frees, 456 bytes allocated
==17235==

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 14 / 19

Valgrind III
==17235== 200 bytes in 2 blocks are definitely lost in loss record 1 of 2
==17235== at 0x4C2AB80: malloc (in /usr/lib/valgrind/vgpreload_memcheck-linux.so)
==17235== by 0x4005FA: main (mtrace-example.c:12)
==17235==
==17235== 256 bytes in 1 blocks are definitely lost in loss record 2 of 2
==17235== at 0x4C2CC70: calloc (in /usr/lib/valgrind/vgpreload_memcheck-linux.so)
==17235== by 0x400613: main (mtrace-example.c:14)
==17235==
==17235== LEAK SUMMARY:
==17235== definitely lost: 456 bytes in 3 blocks
==17235== indirectly lost: 0 bytes in 0 blocks
==17235== possibly lost: 0 bytes in 0 blocks
==17235== still reachable: 0 bytes in 0 blocks
==17235== suppressed: 0 bytes in 0 blocks
==17235==

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 15 / 19

Valgrind IV

==17235== For counts of detected and suppressed errors, rerun with: -v
==17235== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 16 / 19

Additional reading

I Linux Kernel Development, 3rd Edition, by Robert Love, Addison Wesley, O’Reilly Media;
(Jun. 2010) ISBN-10: 0672329468

I Linux System Programming, 2nd Edition, by Robert Love, O’Reilly Media; (8 Jun. 2013)
ISBN-10: 1449339530

I Understanding the Linux VM Manager by Mel Gorman: https://www.kernel.
org/doc/gorman/pdf/understand.pdf

I Valgrind 3.3 - Advanced Debugging and Profiling for Gnu/Linux Applications by J Seward,
N. Nethercote, and J. Weidendorfer, Network Theory Ltd; (1 Mar. 2008) ISBN
978-0954612054

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 17 / 19

References

C. Simmonds.
Mastering Embedded Linux Programming.
Packt Publishing, 2015.

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 18 / 19

The End

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 19 / 19

	Profiling and Tracing
	Profling with top
	Poor man's profler

	perf
	perf
	Confguring the kernel for perf
	Building perf with the Yocto Project
	Building perf with Buildroot
	Profling with perf
	perf user interfaces
	OProfle and gprof
	LTTng components
	LTTng and the Yocto Project
	LTTng and Buildroot
	Callgrind
	Helgrind
	Using strace to show system calls

