
Operating Systems And Applications For
Embedded Systems

Debugging

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 1 / 17

Plan
Connecting GDB and gdbserver

TCP
Serial
Preparing to debug
Remote debugging
Breakpoints
Running and stepping
Information commands
Running to a breakpoint

Debugging shared libraries
The Yocto Project
Buildroot
Just-in-time debugging

Debugging kernel code
Debugging kernel code with kgdb
Additional reading

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 2 / 17

TCP

On server side:
gdbserver :10000 ./hello-world
Process hello-world created; pid = 103
Listening on port 10000
On client side:
arm-poky-linux-gnueabi-gdb hello-world
(gdb) target remote 192.168.1.101:10000
On server side:
Remote debugging from host 192.168.1.1

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 3 / 17

Serial

On server side:
gdbserver /dev/ttyO0 ./hello-world
On client side:
stty -F /dev/ttyO1 115200
(gdb) set remotebaud 115200
(gdb) target remote /dev/ttyUSB0

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 4 / 17

Preparing to debug

0: This produces no debug information at all and is equivalent to omitting the -g or -ggdb
switch
1: This produces little information but which includes function names and external variables
which is enough to generate a back trace
2: This is the default and includes information about local variables and line numbers so that
you can do source level debugging and a single step through the code
3: This includes extra information which, among other things, means that GDB handles macro
expansions correctly

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 5 / 17

Remote debugging
I At the start of a debug session you need to load the program you want to debug on the

target using gdbserver and then separately load GDB from your cross toolchain on the
host.

I GDB and gdbserver need to connect to each other before a debug session can begin.
I GDB, running onto the host, needs to be told where to look for debug symbols and source

code, especially for shared libraries.
I The GDB run command does not work as expected.
I gdbserver will terminate when the debug session ends and you will need to restart it if you

want another debug session.
I You need debug symbols and source code for the binaries you want to debug on the host,

but not necessarily on the target. Often there is not enough storage space for them on the
target and they will need to be stripped before deploying to the target.

I The GDB/gdbserver combination does not have all the features of GDB running natively:
for example, gdbserver cannot follow the child after fork() whereas native GDB can.

I Odd things can happen if GDB and gdbserver are different versions or are the same
version but configured differently. Ideally they should be built from the same source using
your favorite build tool.

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 6 / 17

Breakpoints

Command Use
break <location> Set a breakpoint on a function name, line number or line. Examples

are: "main", "5", and śortbug.c:42"
b <location>
info break List breakpoints
i b
delete break <N> Delete breakpoint N
d b <N>

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 7 / 17

Running and stepping

Command Use
run Load a fresh copy of the program into memory and start it running.

This does not work for remote debug using gdbserver
r
continue Continue execution from a breakpoint Ctrl-C Stop the program being

debugged
c
step Step one line of code, stepping into any function that is called
s
next Step one line of code, stepping over a function call finish Run until

the current function returns
n

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 8 / 17

Information commands

Command Use
backtrace List the call stack
bt
info threads Continue execution from a breakpoint
Info libs Stop the program
print <variable> Print the value of a variable, e.g. print foo
p <variable>
list List lines of code around the current program counter

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 9 / 17

Running to a breakpoint

(gdb) break main
Breakpoint 1, main (argc=1, argv=0xbefffe24) at helloworld.c:8
8 printf("Hello, world!
n");

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 10 / 17

The Yocto Project

You can add these debug packages selectively to your target image by adding <package
name-dbg> to your target recipe. For glibc, the package is named glibc-dbg. Alternatively, you
can simply tell the Yocto Project to install all debug packages by adding dbg-pkgs to
EXTRA_IMAGE_FEATURES.

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 11 / 17

Buildroot

1. BR2_ENABLE_DEBUG in the menu Build options | build packages with debugging
symbols

2. setting Build options | strip command for binaries on target to none

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 12 / 17

Just-in-time debugging

gdbserver –attach :10000 109
Attached; pid = 109
Listening on port 10000
(gdb) detach
Detaching from program: /home/chris/MELP/helloworld/helloworld,
process 109
Ending remote debugging.

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 13 / 17

Debugging kernel code with kgdb

1. CONFIG_DEBUG_INFO is in the Kernel hacking | Compile-time checks and compiler
options | Compile the kernel with debug info menu

2. CONFIG_FRAME_POINTER may be an option for your architecture, and is in the Kernel
hacking | Compile-time checks and compiler options | Compile the kernel with frame
pointers menu

3. CONFIG_KGDB is in the Kernel hacking | KGDB: kernel debugger menu
4. CONFIG_KGDB_SERIAL_CONSOLE is in the Kernel hacking | KGDB: kernel debugger |

KGDB: use kgdb over the serial console menu

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 14 / 17

Additional reading

1. The Art of Debugging with GDB, DDD, and Eclipse, by Norman Matloff and Peter Jay
Salzman, No Starch Press; 1 edition (28 Sept. 2008), ISBN 978-1593271749

2. GDB Pocket Reference by Arnold Robbins, O’Reilly Media; 1st edition (12 May 2005),
ISBN 978-0596100278

3. Getting to grips with Eclipse: cross compiling, http://2net.co.uk/tutorial/
eclipse-cross-compile

4. Getting to grips with Eclipse: remote access and debugging, http://2net.co.uk/
tutorial/eclipse-rse

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 15 / 17

References

C. Simmonds.
Mastering Embedded Linux Programming.
Packt Publishing, 2015.

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 16 / 17

The End

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 17 / 17

	Connecting GDB and gdbserver
	TCP
	Serial
	Preparing to debug
	Remote debugging
	Breakpoints
	Running and stepping
	Information commands
	Running to a breakpoint

	Debugging shared libraries
	The Yocto Project
	Buildroot
	Just-in-time debugging

	Debugging kernel code
	Debugging kernel code with kgdb
	Additional reading

