
Operating Systems And Applications For
Embedded Systems

Real-time Programming

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 1 / 18

Plan
Real-time Programming

Identifying the sources of non-determinism
Scheduling latency
Kernel preemption
The real-time Linux kernel
Thread priorities
PREEMPT RT patches
Threaded interrupt handlers
Preemptible kernel locks
cyclictest
cyclictest no preemption
cyclictest standard preemption
RT preemption cyclictest
Ftrace
Further reading

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 2 / 18

Identifying the sources of non-determinism
I Scheduling: Real-time threads must be scheduled before others so they must have a

real-time policy, SCHED_FIFO, or SCHED_RR. Additionally they should have priorities
assigned in descending order starting with the one with the shortest deadline, according to
the theory of Rate Monotonic Analysis.

I Scheduling latency: The kernel must be able to reschedule as soon as an event such as an
interrupt or timer occurs, and not be subject to unbounded delays.

I Priority inversion: This is a consequence of priority-based scheduling, which leads to
unbounded delays when a high priority thread is blocked on a mutex held by a low priority
thread. User space has priority inheritance and priority ceiling mutexes; in kernel space we
have rt-mutexes which implement priority inheritance and which I will talk about in the
section on the real-time kernel.

I Accurate timers: If you want to manage deadlines in the region of low milliseconds or
microseconds, you need timers that match. High resolution timers are crucial and are a
configuration option on almost all kernels.

I Page faults: A page fault while executing a critical section of code will upset all timing
estimates. You can avoid them by locking memory, as I describe later on.

I Interrupts: They occur at unpredictable times and can result in unexpected processing
overhead if there is a sudden flood of them. There are two ways to avoid this. One is to
run interrupts as kernel threads, and the other, on multi-core devices, is to shield one or
more CPUs from interrupt handling. I will discuss both possibilities later.

I Processor caches: Provide a buffer between the CPU and the main memory and, like all
caches, are a source of non-determinism, especially on multi-core devices.

I Memory bus contention: When peripherals access memory directly through a DMA
channel they use up a slice of memory bus bandwidth, which slows down access from the
CPU core (or cores) and so contributes to non deterministic execution of the program.
However, this is a hardware issue and is also beyond the scope of this book.

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 3 / 18

Scheduling latency

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 4 / 18

Kernel preemption

I CONFIG_PREEMPT_NONE: no preemption
I CONFIG_PREEMPT_VOLUNTARY: enables additional checks for requests for

preemption
I CONFIG_PREEMPT: allows the kernel to be preempted

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 5 / 18

The real-time Linux kernel

I is running an interrupt or trap handler
I is holding a spin lock or in an RCU critical section. Spin lock and RCU are kernel locking

primitives, the details of which are not relevant here
I is between calls to preempt_disable() and preempt_enable()
I hardware interrupts are disabled

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 6 / 18

Thread priorities

1. The POSIX timers thread, posixcputmr, should always have the highest priority.
2. Hardware interrupts associated with the highest priority real-time thread.
3. The highest priority real-time thread.
4. Hardware interrupts for the progressively lower priority real-time threads followed by the

thread itself.
5. Hardware interrupts for non-real-time interfaces.
6. The soft IRQ daemon, ksoftirqd, which on RT kernels is responsible for running delayed

interrupt routines and, prior to Linux 3.6, was responsible for running the network stack,
the block I/O layer, and other things. You may need to experiment with different priority
levels to get a balance.

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 7 / 18

PREEMPT_RT patches

https://www.kernel.org/pub/linux/kernel/projects/rt cd linux-4.1.10
zcat patch-4.1.10-rt11.patch.gz | patch -p1

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 8 / 18

Threaded interrupt handlers

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 9 / 18

Preemptible kernel locks

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 10 / 18

cyclictest

bitbake core-image-rt
If you are using Buildroot, you need to add the package, BR2_PACKAGE_RT_TESTS in the
menu Target packages | Debugging, profiling and benchmark | rt-tests.
cyclictest -p 99 -m -n -l 100000 -q -h 500 > cyclictest.data

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 11 / 18

cyclictest no preemption

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 12 / 18

cyclictest standard preemption

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 13 / 18

RT preemption cyclictest

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 14 / 18

Ftrace
I irqsoff: CONFIG_IRQSOFF_TRACER traces code that disables interrupts, recording the

worst case
I preemptoff: CONFIG_PREEMPT_TRACER is similar to irqsoff, but traces the longest

time that kernel preemeption is disabled (only available on preemptible kernels)
I preemptirqsoff: it combines the previous two traces to record the largest time either irqs

and/or preemption is disabled
I wakeup: traces and records the maximum latency that it takes for the highest priority task

to get scheduled after it has been woken up
I wakeup_rt: the same as wake up but only for real-time threads with the SCHED_FIFO,

SCHED_RR, or SCHED_DEADLINE policies
I wakeup_dl: the same but only for deadline-scheduled threads with the

SCHED_DEADLINE policy
echo preemptoff > /sys/kernel/debug/tracing/current_tracer
echo 0 > /sys/kernel/debug/tracing/tracing_max_latency
echo 1 > /sys/kernel/debug/tracing/tracing_on
sleep 60
echo 0 > /sys/kernel/debug/tracing/tracing_on

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 15 / 18

Further reading

I Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications
by Buttazzo, Giorgio, Springer, 2011

I Multicore Application Programming by Darryl Gove, Addison Wesley, 2011

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 16 / 18

References

C. Simmonds.
Mastering Embedded Linux Programming.
Packt Publishing, 2015.

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 17 / 18

The End

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 18 / 18

	Real-time Programming
	Identifying the sources of non-determinism
	Scheduling latency
	Kernel preemption
	The real-time Linux kernel
	Thread priorities
	PREEMPT RT patches
	Threaded interrupt handlers
	Preemptible kernel locks
	cyclictest
	cyclictest no preemption
	cyclictest standard preemption
	RT preemption cyclictest
	Ftrace
	Further reading

