Operating Systems And Applications For
Embedded Systems

FreeRTOS

.LH Kl:l;E!I:lTEARII (intel)
A KOMPUTEROWEJ

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 1/20 sponsorspecainos i

Plan
FreeRTOS
TOP LEVEL TASK STATES
Creating Tasks
The actual execution pattern of the two tasks
Tick interrupt executing
The execution pattern when one task has a higher priority than the other
Full task state machine
The execution sequence when the tasks use vTaskDelay() in place of the NULL loop
The execution pattern with periodic task
The sequence of task execution without idle state
The execution sequence with task deleting
Execution pattern with pre-emption points highlighted

Interrupt Management
Interrupt example

Memory Management
RAM allocation

'LH KI:{;EY?;:RH (intel)
A KOMPUTEROWEJ

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 2/20 Sponsorspecialnodci

‘Lﬂ e

= KOMPUTEROWEJ

Mariusz Naumowicz

TOP LEVEL TASK STATES

All tasks that are Only one task
not currently can be in the
Running are in the Running state at
Not Running State any one time

Operating Systems And Applications For Embedded Systems

1 lipca 2016 3/20

Creating Tasks |

Listing 1: Listing

1 void vTaskl(void sxpvParameters)

2 {

3 const char xpcTaskName = "Task 1 is running\r\n";

4 volatile unsigned long ul;

5 /* As per most tasks, this task is implemented in an infinite loop.
6 HOI (T o)

7

8 /* Print out the name of this task. x/

9 vPrintString (pcTaskName);

10 /* Delay for aperiod. */

11 for(ul = 0; ul < mainDELAY_LOOP_COUNT; ul++)

12 {

13 /* This loop is just a very crude delay implementation. There i

i.ﬂ".:‘z"v'.’.'.‘é‘m. (i@
A KOMPUTEROWEJ

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 4/20 Sponsarspecianossi

Creating Tasks Il

14 nothing to do in here. Later examples will replace this crude
15 loop with a proper delay/sleep function. x/

16 }

17 }

18 }

19 void vTask2(void xpvParameters)

20 {

21 const char xpcTaskName = "Task 2 is running\r\n";

22 volatile unsigned long ul;

23 /* As per most tasks, this task is implemented in an infinite loop.
24 for(;;)

25

26 /* Print out the name of this task. x*/

27 vPrintString (pcTaskName);

28 /* Delay for a period. x/

'Lﬂ".ﬁi‘v'.’.'.‘é‘m. (i@
A KOMPUTEROWEJ

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 5/20 Sonsorspeciainoiei

Creating Tasks Il

29 for(ul = 0; ul < mainDELAY_LOOP_COUNT; ul4++)

30 {

31 /* This loop is just a very crude delay implementation ./ There i
32 nothing to do in here. Later examples will replace this <crude
33 loop with a proper delay/sleep function. %/

34 }

35 }

36 }

37 int main(void)

38 {

39 /x Create one of the two tasks. Note that a real application should
40 the return value of the xTaskCreate() call to ensure the task was c
41 successfully . %/

42 xTaskCreate(vTaskl, /x Pointer to the function that implements the
43 "Task 1",/ Text name for the task. This is to faci

KATEDRA .
B (inteD

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 6/20 Sponsorspeciainoiei

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58 1

Creating Tasks IV

only. x/

1000, /% Stack depth — most small microcontrollers

less stack than this. %/

NULL, /x We are not using the task parameter.—«/

1, /* This task will run at priority 1+ %/

NULL); /x We are not going to use the task-handle.
/x Create the other task in exactly the same way and at the same pr
xTaskCreate(vTask2, "Task 2", 1000, NULL, 1, NULL);
/* Start the scheduler so the tasks start executing. */
vTaskStartScheduler ();
/* If all is well then main() will never reach here as the schedule
now be running the tasks. If main() does reach here then it is like
there was insufficient heap memory available for the idle task to b
for(;:)

KATEDRA .
B (inteD

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 7/20 Sponsorspeciainoiei

The actual execution pattern of the two tasks

At time t1, Task 1 At time t2 Task 2 enters the Running
enters the Running state and executes until time t3 - at
state and executes which point Task1 re-enters the
until time t2 Running state
\.
\ /
N\
Task 1 o :
Task 2 P

1 © 3 Tme

'Lﬂ ﬁﬁ;EY[l’lTEARII (in t9|>
A KOMPUTEROWEJ

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 8/20 Sonsorspeciainoiei

Tick interrupt executing

Kernel runs in tick
interrupt to select

next task
Tik D /
interrupt /| Newly selected task runs when
oceurs /| the tick interrupt completes
Kernel |

Task 1

Task 2

U L @3

'LH".:?J.’.’.*:R.. (i@
A KOMPUTEROWEJ

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 9/20 Sponsorspeciainoiei

The execution pattern when one task has a higher priority than the other

. The scheduler runs in the tick interrupt
Tick but selects the same task. Task 2 is
interrupt always in the Running state and Task 1 is
oceurs always in the Not Running state

Kernel
Task 1
Task 2

.LH ﬁﬁ?v?ﬁéml (in tE|>
A KOMPUTEROWEJ

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 10 /20 Sporsorspecainosei

‘Lﬂ e

= KOMPUTEROWEJ

Mariusz Naumowicz

Full task state machine

Nat Running
|super state)

called

Suspended
Il- 'III*-—.\

.

wTaskSuspend)
called

vTaskSuspend()

<

\
M,

N

iy

vTaskResume{)
called

T
Blocked Ar/

'
A

- - J/

vTaskSuspend()
called

Blacking AP
function called

7

Operating Systems And Applications For Embedded Systems

1 lipca 2016

11/20 sponwrspodanos

The execution sequence when the tasks use vTaskDelay() in place of the
NULL loop

4 - When the delay expires the scheduler moves th
2-Task 1 prints out ts string, then it toolj tasks back into the ready state, where both execute

enters the Blocked state by calling again before once again calling vTaskDelay() causing
vTaskDelay(). them to re-enter the Blocked state. Task 2 executes
first as it has the higher priority.

Task 1

12 3 Time .
\ \

N,

1 - Task 2 has the highest priority so runs first. It
prints out its string then calls vTaskDelay() -and inso | | 3 - At this point both application tasks are m
doing enters the Blocked state, permitting the lower the Blocked state - so the Idle task runs.

priority Task 1 to execute

.LH KlﬁlitY[l)lTEARII (in tE|)
A KOMPUTEROWEJ

Mariusz Naumowicz

Operating Systems And Applications For Embedded Systems 1 lipca 2016 12 /20 Sporsorspecainosei

The execution pattern with periodic task

2 ATTime 15 the ok interrupt finds thai the Perodic tas

period has expired so moved the Periodic task into the Ready
Cate. The Pericod task 1 the highest priority task 50
immediately then enters the Running state where it prints out its
string exactly once before calling vTaskDelayUntil() to return to
the Blocked state.

|| € Perodic task entenng he

]| Blacked state maans the schadular has

again to choose a task to enter the

1 Running state - in this case Continuous
\ 1 is chosen and it runs up to the next tick
!

ONTNUOUS Task 1 runs for a
complate tick period (time slice
between times t1 and t2) - during
which time it could print out its
string many times

interrupt - during which time it could print
out its string many times,

Periodic |
Continuous 1
The Idle task never enters the
i + Running state as there are
Continuous 2 — atways higher priority task that
; are able to do so
Idle /

/ i
\ l‘lf/tz t3 Timet5,

2 - The tick interrupt occurs during which the
scheduler selects a new task to run. As both

Continuous tasks have the same priority and 3 - At time t3 the tick interrupt
hoth are always able to run the scheduler runs again, cause & switch back
shares processing time betwean the two - sa to Centinuous 1, and so it goes
Continuous 2 enters the Running state where it on.

remains for the entire tick period - during which
time it could print out its string many times.

KATEDRA .
INZYNIERII intel
KOMPUTEROWE)

Mariusz Naumowicz

Operating Systems And Applications For Embedded Systems 1 lipca 2016 13 /20 Sporsorspecinosei

The sequence of task execution without idle state

4 - Task1 runs again when
1- Tasllﬂ runs Task2 lowers its own priarity
first as it has the back to being below the
highest priarity Task1 priority, and s0 on

Task 1\. -

The Idie task never runs

as both application tasks
are always able to run and
always have a priority
Idle above the idle priority

Task 2

i.ﬂ KAemas t1 t2 Time @

A KOMPUTEROWE

Mariusz Naumowicz Q ing Systems And A ." ions For Embedded Systems 1 lipca 2016 14 /20 Sponsorspecian okci

The execution sequence with task deleting

itself, allowing execution to return to Task 1.
—

Time th

3 - Task 1 calls vTaskDelay(), allowing
ts.

2 - Task 2 does nothing other than delete Iﬁ

Task 2 starts to run immediately as i

: un the idle task fo run until the delay time
has the higher priority.

i
1 - Task 1 runs and creates Task 2.B|
it
expires, and the whole sequence repeats.

'Lﬂ".:‘z"v'.’.'.‘é‘m. (i@
A KOMPUTEROWEJ

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 15 /20 Sporsorspecainosei

Execution pattern with pre-emption points highlighted

| Task 2 pre-empts Task 31N [Task 1 pre-empts Task 20N

Task1 (high, event) N
Task2 (med, penodic)j—!: : o— i
Task3 (low, event) ﬂ— — :
I 4 S0 |
Idle task (continuous) e —) m
|t1 2/ B 66 7B 9 g1 13
e t1g 112

. Task 2 pre-empl Event processing is
‘ Task 3 pre-empts the idie task. % the Idle task delayed until higher
priority tasks block

.ﬂ K ATEDRA
L INZYNIERI
= KOMPUTEROWEJ

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016

16/20 sponwrspodanosi

‘Lﬂ e

= KOMPUTEROWEJ

Mariusz Naumowicz

Interrupt example

—
=

L_HEAP_SIZE

—configTOTA

B

L—oaoeds saiy ——

Operating Systems And Applications For Embedded Systems

1 lipca 2016

17/20

‘Lﬂ e

= KOMPUTEROWEJ

Mariusz Naumowicz

—configTOTAL_HEAP_SIZE—

RAM allocation

=

B

L—oaoeds saiy ——

Operating Systems And Applications For Embedded Systems

1 lipca 2016

18/20

References

@ R. Barry.
Using the FreeRTOS Real Time Kernel: A Practical Guide.
Real Time Engineers Limited, 2010.

'Lﬂ".:‘z"v'.’.'.‘é‘m. (i@
A KOMPUTEROWEJ

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 19 /20 Sporsorspecainosei

The End

'Lﬂ'ﬁﬁi‘v'.’.’.*é‘m. (i@
A KOMPUTEROWEJ

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 20 /20 Sponsorspeciainoiei

	FreeRTOS
	TOP LEVEL TASK STATES
	Creating Tasks
	The actual execution pattern of the two tasks
	Tick interrupt executing
	The execution pattern when one task has a higher priority than the other
	Full task state machine
	The execution sequence when the tasks use vTaskDelay() in place of the NULL loop
	The execution pattern with periodic task
	The sequence of task execution without idle state
	The execution sequence with task deleting
	Execution pattern with pre-emption points highlighted

	Interrupt Management
	Interrupt example

	Memory Management
	RAM allocation

