
Operating Systems And Applications For
Embedded Systems

Processes and Threads

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 1 / 22

Plan

Processes
Process definition
Creating a new process
Output
Running a different program

Threads
Thread definition
Creating a new thread
Terminating a thread
Compiling a program with threads
Partitioning the problem
Scheduling
Further reading

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 2 / 22

Process definition

A process is a memory address space and a thread of execution, as shown in the following
diagram. The address space is private to the process and so threads running in different
processes. cannot access it. This memory separation is created by the memory management
subsystem in the kernel, which keeps a memory page mapping for each process and
re-programs the memory management unit on each context switch.

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 3 / 22

Creating a new process I

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 4 / 22

Creating a new process II
Here is a simple example, showing process creation and termination:

Listing 1: Listing
1 #i n c l u d e <s t d i o . h>
2 #i n c l u d e <s t d l i b . h>
3 #i n c l u d e <un i s t d . h>
4 #i n c l u d e <sy s / t yp e s . h>
5 #i n c l u d e <sy s / wa i t . h>
6 i n t main (vo i d)
7 {
8 i n t p i d ;
9 i n t s t a t u s ;
10 p id = f o r k () ;
11 i f (p i d == 0) {
12 p r i n t f (" I am the c h i l d , PID %d\n" , g e t p i d ()) ;

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 5 / 22

Creating a new process III

13 s l e e p (1 0) ;
14 e x i t (4 2) ;
15 } e l s e i f (p i d > 0) {
16 p r i n t f (" I am the parent , PID %d\n" , g e t p i d ()) ;
17 wa i t (& s t a t u s) ;
18 p r i n t f (" Ch i l d t e rm inated , s t a t u s %d\n" ,
19 WEXITSTATUS(s t a t u s)) ;
20 } e l s e
21 p e r r o r (" f o r k : ") ;
22 r e t u r n 0 ;
23 }

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 6 / 22

Output

I am the parent, PID 13851
I am the child, PID 13852
Child terminated with status 42

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 7 / 22

Running a different program I
1. int execl(const char *path, const char *arg, ...);
2. int execlp(const char *file, const char *arg, ...);
3. int execle(const char *path, const char *arg, ..., char * const envp[]);
4. int execv(const char *path, char *const argv[]);
5. int execvp(const char *file, char *const argv[]);
6. int execvpe(const char *file, char *const argv[], char *const envp[]);

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 8 / 22

Running a different program II
Listing 2: Listing

1 #i n c l u d e <s t d i o . h>
2 #i n c l u d e <s t d l i b . h>
3 #i n c l u d e <s t r i n g . h>
4 #i n c l u d e <un i s t d . h>
5 #i n c l u d e <sy s / t yp e s . h>
6 #i n c l u d e <sy s / wa i t . h>
7 i n t main (i n t argc , cha r ∗ a rgv [])
8 {
9 char command_str [1 2 8] ;
10 i n t p i d ;
11 i n t c h i l d _ s t a t u s ;
12 i n t wa i t_ fo r = 1 ;
13 wh i l e (1) {
14 p r i n t f (" sh> ") ;

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 9 / 22

Running a different program III
15 s c an f ("%s " , command_str) ;
16 p i d = f o r k () ;
17 i f (p i d == 0) {
18 /∗ c h i l d ∗/
19 p r i n t f ("cmd ’%s ’\ n" , command_str) ;
20 e x e c l (command_str , command_str , (cha r ∗)NULL) ;
21 /∗ We shou ld not r e t u r n from exe c l , so on l y ge t
22 to t h i s l i n e i f i t f a i l e d ∗/
23 p e r r o r (" exec ") ;
24 e x i t (1) ;
25 }
26 i f (wa i t_ fo r) {
27 wa i t p i d (pid , &ch i l d_ s t a t u s , 0) ;
28 p r i n t f ("Done , s t a t u s %d\n" , c h i l d _ s t a t u s) ;
29 }

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 10 / 22

Running a different program IV

30 }
31 r e t u r n 0 ;
32 }

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 11 / 22

Thread definition I

A thread is a thread of execution within a process. All processes begin with one thread that
runs the main() function and is called the main thread. You can create additional threads using
the POSIX threads function pthread_create(3), causing additional threads to execute in the
same address space, as shown in the following diagram. Being in the same process, they share
resources with each other. They can read and write the same memory and use the same fle
descriptors, and so communication between threads is easy, so long as you take care of the
synchronization and locking issues.

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 12 / 22

Creating a new thread I
int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine)
(void *), void *arg);

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 13 / 22

Creating a new thread II
Listing 3: Listing

1 #i n c l u d e <s t d i o . h>
2 #i n c l u d e <un i s t d . h>
3 #i n c l u d e <pth read . h>
4 #i n c l u d e <sy s / s y s c a l l . h>
5 s t a t i c vo i d ∗ th read_fn (vo i d ∗ arg)
6 {
7 p r i n t f ("New th r ead s t a r t e d , PID %d TID %d\n" ,
8 g e t p i d () , (p id_t) s y s c a l l (SYS_gett id)) ;
9 s l e e p (1 0) ;
10 p r i n t f ("New th r ead t e rm i n a t i n g \n") ;
11 r e t u r n NULL ;
12 }
13 i n t main (i n t argc , cha r ∗ a rgv [])
14 {

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 14 / 22

Creating a new thread III

15 pthread_t t ;
16 p r i n t f ("Main thread , PID %d TID %d\n" ,
17 g e t p i d () , (p id_t) s y s c a l l (SYS_gett id)) ;
18 p th r e ad_c r ea t e (&t , NULL , thread_fn , NULL) ;
19 p th r e ad_ j o i n (t , NULL) ;
20 r e t u r n 0 ;
21 }

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 15 / 22

Terminating a thread

1. It reaches the end of its start_routine
2. It calls pthread_exit(3)
3. It is canceled by another thread calling pthread_cancel(3)
4. The process which contains the thread terminates, for example, because of a thread

calling exit(3), or the process receiving a signal that is not handled, masked or ignored

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 16 / 22

Compiling a program with threads

The support for POSIX threads is part of the C library, in the library libpthread.so.
When building a threaded program, you must add the switch –pthread at the compile and link
stages.

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 17 / 22

Partitioning the problem
1. Keep tasks that have a lot of interaction.

Minimize overheads by keeping closely inter-operating threads together in one process.
2. Don’t put all your threads in one basket.

On the other hand, try and keep components with limited interaction in separate
processes, in the interests of resilience and modularity.

3. Don’t mix critical and non-critical threads in the same process.
This is an amplification of Rule 2: the critical part of the system, which might be the
machine control program, should be kept as simple as possible and written in a more
rigorous way than other parts. It must be able to continue even if other processes fail. If
you have real-time threads, they, by definition, must be critical and should go into a
process by themselves.

4. Threads shouldn’t get too intimate.
One of the temptations when writing a multi-threaded program is to intermingle the code
and variables between threads because it is all in one program and easy to do. Don’t keep
threads modular with well-defined interactions.

5. Don’t think that threads are for free.
It is very easy to create additional threads but there is a cost, not least in the additional
synchronization necessary to coordinate their activities.

6. Threads can work in parallel.
Threads can run simultaneously on a multi-core processor, giving higher throughput. If you
have a large computing job, you can create one thread per core and make maximum use of
the hardware. There are libraries to help you do this, such as OpenMP. You probably
shouldn’t be coding parallel programming algorithms from scratch.

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 18 / 22

Scheduling

1. A thread blocks by calling sleep() or in a blocking I/O call
2. A timeshare thread exhausts its time slice
3. An interrupt causes a thread to be unblocked, for example, because of I/O completing

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 19 / 22

Further reading
1. The Art of Unix Programming, by Eric Steven Raymond, Addison Wesley; (23 Sept. 2003)

ISBN 978-0131429017
2. Linux System Programming, 2nd edition, by Robert Love, O’Reilly Media; (8 Jun. 2013)

ISBN-10: 1449339530
3. Linux Kernel Development, 3rd edition by Robert Love, Addison-Wesley Professional;

(July 2, 2010) ISBN-10: 0672329468
4. The Linux Programming Interface, by Michael Kerrisk, No Starch Press; (October 2010)

ISBN 978-1-59327-220-3
5. UNIX Network Programming: v. 2: Interprocess Communications, 2nd Edition, by W.

Richard Stevens, Prentice Hall; (25 Aug. 1998) ISBN-10: 0132974290
6. Programming with POSIX Threads, by Butenhof, David R, Addison-Wesley, Professional
7. Scheduling Algorithm for multiprogramming in a Hard-Real-Time Environment, by C. L.

Liu and James W. Layland, Journal of ACM, 1973, vol 20, no 1, pp. 46-61

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 20 / 22

References

C. Simmonds.
Mastering Embedded Linux Programming.
Packt Publishing, 2015.

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 21 / 22

The End

Mariusz Naumowicz Operating Systems And Applications For Embedded Systems 1 lipca 2016 22 / 22

	Processes
	Process definition
	Creating a new process
	Output
	Running a different program

	Threads
	Thread definition
	Creating a new thread
	Terminating a thread
	Compiling a program with threads
	Partitioning the problem
	Scheduling
	Further reading

