

Embedded System Design Peripheral Devices for Embedded Systems

Rafał Kapela

June 26, 2016

Embedded System Design

1 Introduction

- Image processing challenges
- Available technologies in embedded image processing

2 Exemplary use cases

- Local detection/description
- Stereo correspondence
- Deep learning

Introduction Image processing challenges

Local detection/description

Introduction Image processing challenges

Stereo correspondence

- * ロ > * 母 > * き > * き > 「き 」 の < @

Embedded System Design

Introduction Image processing challenges

Realise the power of your video.

video encoding is not just about changing the file extension

Video decoding/encoding

Introduction Image processing challenges

Deep learning

Introduction Available technologies

Embedded processor extensions/utilities

i.MX 6 Series Applications Processor Block Diagram

Available on certain product families

Introduction Available technologies

Hardware acceleration units (SoC)

i.MX 6 Series Applications Processor Block Diagram

Available on certain product families

Introduction Available technologies

 Control
 ALU
 ALU

 ALU
 ALU

 ALU
 ALU

 BRAM
 DRAM

 CPU
 GPU

CUDA

- * ロ * * @ * * 注 * 注 * うくぐ

Embedded System Design

Introduction Available technologies

Fast REtinA Keypoint

Embedded System Design

Local detection/description $_{\rm FREAK \ on \ zynq}$

Fast REtinA Keypoint

 extracts information using DoGs (Differences of Gaussians)

Local detection/description

Fast REtinA Keypoint

- extracts information using DoGs (Differences of Gaussians)
- the spatial distribution of ganglion cells reduces expotentially with the radial distance from the foveola

Local detection/description

Fast REtinA Keypoint

- extracts information using DoGs (Differences of Gaussians)
- the spatial distribution of ganglion cells reduces expotentially with the radial distance from the foveola
- the size of the receptive field increases with radial distance from the foveola

$\frac{\text{Local detection}}{\text{FREAK on zynq}}$

Fast REtinA Keypoint - zynq implementation

¹Rafal Kapela, Karol Gugala, Pawel Sniatala, Aleksandra Swietlicka, Krzysztof Kolanowski, Embedded Platform for Local Image Descriptor Based Object Detection, Journal of Applied Mathematics and Computation

Local detection/description

Fast REtinA Keypoint - zynq implementation

 keypoint detection and description done in software

¹ Rafal Kapela, Karol Gugala, Pawel Sniatala, Aleksandra Swietlicka, Krzysztof Kolanowski, Embedded Platform for Local Image Descriptor Based Object Detection, Journal of Applied:Mathe<mark>m</mark>atics and Computation

Local detection/description

Fast REtinA Keypoint - zynq implementation

- keypoint detection and description done in software
- hardware acceleration done for descriptor matcher

¹Rafal Kapela, Karol Gugala, Pawel Sniatala, Aleksandra Swietlicka, Krzysztof Kolanowski, Embedded Platform for Local Image Descriptor Based Object Detection, Journal of Applied:Mathematics and Computation

Local detection/description

Fast REtinA Keypoint - zynq implementation

- keypoint detection and description done in software
- hardware acceleration done for descriptor matcher
- Linux device driver that binds two parts together

1

¹Rafal Kapela, Karol Gugala, Pawel Sniatala, Aleksandra Swietlicka, Krzysztof Kolanowski, Embedded Platform for Local Image Descriptor Based Object Detection, Journal of Applied Mathematics and Computation

Local detection/description VISION – Field Sports Event Detection

Video content detection in real-time

2 3

²Rafal Kapela, Kevin McGuinness, Noel Edward O'Connor, Real-time field sports classification using colour anf frequency space decompositions, Journal of Real-time Image Processing

³Rafal Kapela, Aleksandra Swietlicka, Noel E. O'Connor, Andrzej Rybarczyk, Krzysztof Kolanowski, Real-time Event Classification in Field Sports Videos, Signal Processing: Image Communication = + < = + +</p>

Local detection/description VISION – Field Sports Event Detection

Video content detection in real-time

 real-time scoreboard analyzer

²Rafal Kapela, Kevin McGuinness, Noel Edward O'Connor, Real-time field sports classification using colour anf frequency space decompositions, Journal of Real-time Image Processing

³Rafal Kapela, Aleksandra Swietlicka, Noel E. O'Connor, Andrzej Rybarczyk, Krzysztof Kolanowski, Real-time Event Classification in Field Sports Videos, Signal Processing: Image Communication 2004 (2004)

Local detection/description VISION – Field Sports Event Detection

Video content detection in real-time

- real-time scoreboard analyzer
- real-time multithread camera-view detector

2 3

²Rafal Kapela, Kevin McGuinness, Noel Edward O'Connor, Real-time field sports classification using colour anf frequency space decompositions, Journal of Real-time Image Processing

³Rafal Kapela, Aleksandra Swietlicka, Noel E. O'Connor, Andrzej Rybarczyk, Krzysztof Kolanowski, Real-time Event Classification in Field Sports Videos, Signal Processing: Image Commu**ni**cation ***** • • ***** •

Local detection/description VISION – Field Sports Event Detection

Video content detection in real-time

- real-time scoreboard analyzer
- real-time multithread camera-view detector
- real-time cascade classifier

²Rafal Kapela, Kevin McGuinness, Noel Edward O'Connor, Real-time field sports classification using colour and frequency space decompositions, Journal of Real-time Image Processing

2 3

³Rafal Kapela, Aleksandra Swietlicka, Noel E. O'Connor, Andrzej Rybarczyk, Krzysztof Kolanowski, Real-time Event Classification in Field Sports Videos, Signal Processing: Image Commu<mark>f</mark>ication = > < = > = = =

Stereo correspondence gimme2 board

⁴High-speed FPGA-based stereovision system - a success story, Rafal Kapela, Karol Gugala, Antmicro Ltd/Poznan University of Technology, FPGA World Conference $\langle \Box \rangle \langle \overline{\partial} \rangle \langle \overline{a} \rangle \langle \overline{a} \rangle \langle \overline{a} \rangle$

Stereo correspondence gimme2 board

RT stereo-vision**=55MOPS** (QVGA) – 6.7fps on PC CPU

 custom embedded stereo-vision platform

4

Stereo correspondence gimme2 board

RT stereo-vision**=55MOPS** (QVGA) – 6.7fps on PC CPU

- custom embedded stereo-vision platform
- custom stereo-vision
 IPcore

4

⁴High-speed FPGA-based stereovision system - a success story, Rafal Kapela, Karol Gugala, Antmicro Ltd/Poznan University of Technology, FPGA World Conference ← □ → ← □ → ← □ → ← ≥ → ← ≥ → ← ≥ →

Other algorithms Object detection

MPEG-7 real-time content description system

Other algorithms Object detection

Histograms of Oriented Gradients with CUDA on Jetson TK1

・ キャット きょう かんのう

Other algorithms Object detection

Deep Believe Networks & Restricted Boltzman Machines with CUDA

- Embedded computer vision is usually perceived as limited implementation of high demanding PC algorithms.

- Embedded computer vision is usually perceived as limited implementation of high demanding PC algorithms.
- Thanks to the emergence of high-performance, low-cost, energy efficient programmable processors, this is changing.

- Embedded computer vision is usually perceived as limited implementation of high demanding PC algorithms.
- Thanks to the emergence of high-performance, low-cost, energy efficient programmable processors, this is changing.
- In the coming years, embedded vision will change the world by rapidly proliferate into many life areas, creating opportunities for industry and academia.

- Embedded computer vision is usually perceived as limited implementation of high demanding PC algorithms.
- Thanks to the emergence of high-performance, low-cost, energy efficient programmable processors, this is changing.
- In the coming years, embedded vision will change the world by rapidly proliferate into many life areas, creating opportunities for industry and academia.
- But implementing embedded vision applications is challenging, and there is limited know-how.

- Embedded computer vision is usually perceived as limited implementation of high demanding PC algorithms.
- Thanks to the emergence of high-performance, low-cost, energy efficient programmable processors, this is changing.
- In the coming years, embedded vision will change the world by rapidly proliferate into many life areas, creating opportunities for industry and academia.
- But implementing embedded vision applications is challenging, and there is limited know-how.
- Golden rule in embedded computer vision: be realistic its always system level problem.