
Linux kernel introduction Kernel sources Kernel configuration

Linux Kernel
Peripheral Devices for Embedded Systems

Rafal Kapela

June 26, 2016

Rafal Kapela — Linux Kernel 1/42



Linux kernel introduction Kernel sources Kernel configuration

Outline

1 Linux kernel introduction

2 Kernel sources

3 Kernel configuration

Rafal Kapela — Linux Kernel 2/42



Linux kernel introduction Kernel sources Kernel configuration

Outline

1 Linux kernel introduction

2 Kernel sources

3 Kernel configuration

Rafal Kapela — Linux Kernel 3/42



Linux kernel introduction Kernel sources Kernel configuration

History

The Linux kernel is one component of a system, which
also requires libraries and applications to provide features
to end users.

The Linux kernel was created as a hobby in 1991 by a
Finnish student, Linus Torvalds.

Linux quickly started to be used as the kernel for free
software operating systems

Linus Torvalds has been able to create a large and
dynamic developer and user community around Linux.

Nowadays, hundreds of people contribute to each kernel
release, individuals or companies big and small.

Rafal Kapela — Linux Kernel 4/42



Linux kernel introduction Kernel sources Kernel configuration

Linux kernel main roles

Manage all the hardware resources: CPU, memory,
I/O.

Provide a set of portable, architecture and hardware
independent APIs to allow userspace applications and
libraries to use the hardware resources.

Handle concurrent accesses and usage of hardware
resources from different applications.

Example: a single network interface is used by multiple
userspace applications through various network
connections. The kernel is responsible to “multiplex” the
hardware resource.

Rafal Kapela — Linux Kernel 5/42



Linux kernel introduction Kernel sources Kernel configuration

Inside the Linux kernel

Rafal Kapela — Linux Kernel 6/42



Linux kernel introduction Kernel sources Kernel configuration

Linux license

The whole Linux sources are Free Software released under
the GNU General Public License version 2 (GPL v2).

For the Linux kernel, this basically implies that:

When you receive or buy a device with Linux on it, you
should receive the Linux sources, with the right to study,
modify and redistribute them.
When you produce Linux based devices, you must
release the sources to the recipient, with the same
rights, with no restriction..

Rafal Kapela — Linux Kernel 7/42



Linux kernel introduction Kernel sources Kernel configuration

Linux kernel key features

Portability and hardware
support. Runs on most
architectures.

Scalability. Can run on
super computers as well as
on tiny devices (4 MB of
RAM is enough).

Compliance to standards
and interoperability.

Exhaustive networking
support.

Security. It can’t hide its
flaws. Its code is reviewed
by many experts.

Stability and reliability.

Modularity. Can include
only what a system needs
even at run time.

Easy to program. You can
learn from existing code.
Many useful resources on
the net.

Rafal Kapela — Linux Kernel 8/42



Linux kernel introduction Kernel sources Kernel configuration

Supported hardware arch.

See the arch/ directory in the kernel sources

Minimum: 32 bit processors, with or without MMU, and
gcc support

32 bit architectures (arch/ subdirectories)
Examples: arm, avr32, blackfin, m68k, microblaze, mips,
score, sparc, um

64 bit architectures:
Examples: alpha, arm64, ia64, sparc64, tile

32/64 bit architectures
Examples: powerpc, x86, sh

Find details in kernel sources: arch/< arch >/Kconfig,
arch/< arch >/README, or Documentation/< arch >/

Rafal Kapela — Linux Kernel 9/42



Linux kernel introduction Kernel sources Kernel configuration

System calls

The main interface between the kernel and userspace is
the set of system calls

About 300 system calls that provide the main kernel
services

File and device operations, networking operations,
inter-process communication, process management,
memory mapping, timers, threads, synchronization
primitives, etc.

This interface is stable over time: only new system calls
can be added by the kernel developers

This system call interface is wrapped by the C library, and
userspace applications usually never make a system call
directly but rather use the corresponding C library
function

Rafal Kapela — Linux Kernel 10/42



Linux kernel introduction Kernel sources Kernel configuration

Virtual filesystems

Linux makes system and kernel information available in
user-space through virtual filesystems.

Virtual filesystems allow applications to see directories
and files that do not exist on any real storage: they are
created on the fly by the kernel

The two most important virtual filesystems are

proc, usually mounted on /proc:
Operating system related information (processes,
memory management parameters...)
sysfs, usually mounted on /sys:
Representation of the system as a set of devices and
buses. Information about these devices.

Rafal Kapela — Linux Kernel 11/42



Linux kernel introduction Kernel sources Kernel configuration

Outline

1 Linux kernel introduction

2 Kernel sources

3 Kernel configuration

Rafal Kapela — Linux Kernel 12/42



Linux kernel introduction Kernel sources Kernel configuration

Location of kernel sources

The official version of the Linux kernel, as released by
Linus Torvalds is available at http://www.kernel.org

This version follows the well-defined development model
of the kernel
However, it may not contain the latest development
from a specific area, due to the organization of the
development model and because features in development
might not be ready for mainline inclusion

Many kernel sub-communities maintain their own kernel,
with usually newer but less stable features

Architecture communities (ARM, MIPS, PowerPC, etc.),
device drivers communities (I2C, SPI, USB, PCI,
network, etc.), other communities (real-time, etc.)
They generally don’t release official versions, only
development trees are available

Rafal Kapela — Linux Kernel 13/42

http://www.kernel.org


Linux kernel introduction Kernel sources Kernel configuration

Getting Linux sources

The kernel sources are available from
http://kernel.org/pub/linux/kernel as full tarballs
(complete kernel sources) and patches (differences
between two kernel versions).

But for kernel development, one generally uses the Git
version control system:

Fetch the entire kernel sources and history
git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

Create a branch that starts at a specific stable version
git checkout -b < name − of − branch > v3.11
Web interface available at
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/

Read more about Git at http://git-scm.com/

Rafal Kapela — Linux Kernel 14/42



Linux kernel introduction Kernel sources Kernel configuration

Linux kernel size

Linux 3.10 sources:
Raw size: 573 MB (43,000 files, approx 15,800,000 lines)
gzip compressed tar archive: 105 MB bzip2 compressed
tar archive: 83 MB (better) xz compressed tar archive: 69
MB (best)
Minimum Linux 2.6.29 compiled kernel size with
CONFIG EMBEDDED, for a kernel that boots a QEMU
PC (IDE hard drive, ext2 filesystem, ELF executable
support): 532 KB (compressed), 1325 KB (raw)
Why are these sources so big?
Because they include thousands of device drivers, many
network protocols, support many architectures and
filesystems...
The Linux core (scheduler, memory management...) is
pretty small!

Rafal Kapela — Linux Kernel 15/42



Linux kernel introduction Kernel sources Kernel configuration

Outline

1 Linux kernel introduction

2 Kernel sources

3 Kernel configuration

Rafal Kapela — Linux Kernel 16/42



Linux kernel introduction Kernel sources Kernel configuration

Kernel configuration

The kernel configuration and build system is based on
multiple Makefiles

One only interacts with the main Makefile, present at the
top directory of the kernel source tree

Interaction takes place

using the make tool, which parses the Makefile
through various targets, defining which action should be
done (configuration, compilation, installation, etc.). Run
make help to see all available targets.

Example

cd linux-3.6.x/
make < target >

Rafal Kapela — Linux Kernel 17/42



Linux kernel introduction Kernel sources Kernel configuration

Kernel configuration (1)

The kernel contains thousands of device drivers, filesystem
drivers, network protocols and other configurable items

Thousands of options are available, that are used to
selectively compile parts of the kernel source code

The kernel configuration is the process of defining the set
of options with which you want your kernel to be compiled

The set of options depends

On your hardware (for device drivers, etc.)
On the capabilities you would like to give to your kernel
(network capabilities, filesystems, real-time, etc.)

Rafal Kapela — Linux Kernel 18/42



Linux kernel introduction Kernel sources Kernel configuration

Kernel configuration (2)

The configuration is stored in the .config file at the root
of kernel sources

Simple text file, key=value style

As options have dependencies, typically never edited by
hand, but through graphical or text interfaces:

make xconfig, make gconfig (graphical)
make menuconfig, make nconfig (text)
You can switch from one to another, they all load/save
the same .config file, and show the same set of options

To modify a kernel in a GNU/Linux distribution: the
configuration files are usually released in /boot/, together
with kernel images: /boot/config-3.2.0-31-generic

Rafal Kapela — Linux Kernel 19/42



Linux kernel introduction Kernel sources Kernel configuration

Kernel or module?

The kernel image is a single file, resulting from the linking of all

object files that correspond to features enabled in the configuration

This is the file that gets loaded in memory by the
bootloader
All included features are therefore available as soon as
the kernel starts, at a time where no filesystem exists

Some features (device drivers, filesystems, etc.) can however be

compiled as modules

Those are plugins that can be loaded/unloaded
dynamically to add/remove features to the kernel
Each module is stored as a separate file in the
filesystem, and therefore access to a filesystem is
mandatory to use modules
This is not possible in the early boot procedure of the
kernel, because no filesystem is available

Rafal Kapela — Linux Kernel 20/42



Linux kernel introduction Kernel sources Kernel configuration

Kernel option types

There are different types of options
bool options, they are either

true (to include the feature in the kernel) or
false (to exclude the feature from the kernel)

tristate options, they are either

true (to include the feature in the kernel image) or
module (to include the feature as a kernel module) or
false (to exclude the feature)

int options, to specify integer values
string options, to specify string values

Rafal Kapela — Linux Kernel 21/42



Linux kernel introduction Kernel sources Kernel configuration

Kernel option dependencies

There are dependencies between kernel options

For example, enabling a network driver requires the
network stack to be enabled

Two types of dependencies

depends on dependencies. In this case, option A that
depends on option B is not visible until option B is
enabled
select dependencies. In this case, with option A
depending on option B, when option A is enabled,
option B is automatically enabled
make xconfig allows to see all options, even those that
cannot be selected because of missing dependencies. In
this case, they are displayed in gray

Rafal Kapela — Linux Kernel 22/42



Linux kernel introduction Kernel sources Kernel configuration

make xconfig

alertmake xconfig

The most common graphical interface to configure the
kernel.

Make sure you read
help - introduction: useful options!

File browser: easier to load configuration files

Search interface to look for parameters

Required Debian / Ubuntu packages: libqt4-dev g++
(libqt3-mt-dev for older kernel releases)

Rafal Kapela — Linux Kernel 23/42



Linux kernel introduction Kernel sources Kernel configuration

make xconfig screenshot

Rafal Kapela — Linux Kernel 24/42



Linux kernel introduction Kernel sources Kernel configuration

make xconfig search interface

Looks for a keyword in the parameter name. Allows to select
or unselect found parameters.

Rafal Kapela — Linux Kernel 25/42



Linux kernel introduction Kernel sources Kernel configuration

Kernel configuration options

Rafal Kapela — Linux Kernel 26/42



Linux kernel introduction Kernel sources Kernel configuration

make menuconfig

make menuconfig

Useful when no graphics
are available. Pretty
convenient too!

Same interface found in
other tools: BusyBox,
Buildroot...

Required Debian
packages: libncurses-dev

Rafal Kapela — Linux Kernel 27/42



Linux kernel introduction Kernel sources Kernel configuration

make oldconfig

make oldconfig

Needed very often!

Useful to upgrade a .config file from an earlier kernel
release

Issues warnings for configuration parameters that no
longer exist in the new kernel.

Asks for values for new parameters

If you edit a .config file by hand, it’s strongly recommended to
run make oldconfig afterwards!

Rafal Kapela — Linux Kernel 28/42



Linux kernel introduction Kernel sources Kernel configuration

Undoing configuration changes

A frequent problem:

After changing several kernel configuration settings, your
kernel no longer works.

If you don’t remember all the changes you made, you can
get back to your previous configuration:
cp .config.old .config

All the configuration interfaces of the kernel (xconfig,
menuconfig, oldconfig...) keep this .config.old backup
copy.

Rafal Kapela — Linux Kernel 29/42



Linux kernel introduction Kernel sources Kernel configuration

Configuration per architecture

The set of configuration options is architecture dependent

Some configuration options are very architecture-specific
Most of the configuration options (global kernel options,
network subsystem, filesystems, most of the device
drivers) are visible in all architectures.

By default, the kernel build system assumes that the
kernel is being built for the host architecture, i.e. native
compilation

The architecture is not defined inside the configuration,
but at a higher level

We will see later how to override this behaviour, to allow
the configuration of kernels for a different architecture

Rafal Kapela — Linux Kernel 30/42



Linux kernel introduction Kernel sources Kernel configuration

Overview of kernel options (1)

General setup

Local version - append to kernel release allows to
concatenate an arbitrary string to the kernel version that
a user can get using uname -r. Very useful for support!
Support for swap, can usually be disabled on most
embedded devices
Configure standard kernel features (expert users) allows
to remove features from the kernel to reduce its size.
Powerful, but use with care!

Rafal Kapela — Linux Kernel 31/42



Linux kernel introduction Kernel sources Kernel configuration

Overview of kernel options (2)

Loadable module support
Allows to enable or completely disable module support.
If your system doesn’t need kernel modules, best to
disable since it saves a significant amount of space and
memory

Enable the block layer
If CONFIG EXPERT is enabled, the block layer can be
completely removed. Embedded systems using only flash
storage can safely disable the block layer

Processor type and features (x86) or System type (ARM)
or CPU selection (MIPS)

Allows to select the CPU or machine for which the
kernel must be compiled
On x86, only optimization-related, on other architectures
very important since there’s no compatibility

Rafal Kapela — Linux Kernel 32/42



Linux kernel introduction Kernel sources Kernel configuration

Overview of kernel options (3)

Kernel features
Tickless system, which allows to disable the regular timer tick
and use on-demand ticks instead. Improves power savings
High resolution timer support. By default, the resolution of
timer is the tick resolution. With high resolution timers, the
resolution is as precise as the hardware can give
Preemptible kernel enables the preemption inside the kernel
code (the userspace code is always preemptible). See our
real-time presentation for details

Power management
Global power management option needed for all power
management related features
Suspend to RAM, CPU frequency scaling, CPU idle control,
suspend to disk

Rafal Kapela — Linux Kernel 33/42



Linux kernel introduction Kernel sources Kernel configuration

Overview of kernel options (4)

Networking support

The network stack
Networking options

Unix sockets, needed for a form of inter-process
communication
TCP/IP protocol with options for multicast, routing,
tunneling, Ipsec, Ipv6, congestion algorithms, etc.
Other protocols such as DCCP, SCTP, TIPC, ATM
Ethernet bridging, QoS, etc.

Support for other types of network

CAN bus, Infrared, Bluetooth, Wireless stack, WiMax
stack, etc.

Rafal Kapela — Linux Kernel 34/42



Linux kernel introduction Kernel sources Kernel configuration

Overview of kernel options (5)

Device drivers

MTD is the subsystem for flash (NOR, NAND,
OneNand, battery-backed memory, etc.)
Parallel port support
Block devices, a few misc block drivers such as
loopback, NBD, etc.
ATA/ATAPI, support for IDE disk, CD-ROM and tapes.
A new stack exists
SCSI

The SCSI core, needed not only for SCSI devices but
also for USB mass storage devices, SATA and PATA
hard drives, etc.
SCSI controller drivers

Rafal Kapela — Linux Kernel 35/42



Linux kernel introduction Kernel sources Kernel configuration

Overview of kernel options (6)

Device drivers (cont)
SATA and PATA, the new stack for hard disks, relies on SCSI
RAID and LVM, to aggregate hard drives and do replication
Network device support, with the network controller drivers.
Ethernet, Wireless but also PPP
Input device support, for all types of input devices: keyboards,
mice, joysticks, touchscreens, tablets, etc.
Character devices, contains various device drivers, amongst
them

serial port controller drivers
PTY driver, needed for things like SSH or telnet

I2C, SPI, 1-wire, support for the popular embedded buses
Hardware monitoring support, infrastructure and drivers for
thermal sensors

Rafal Kapela — Linux Kernel 36/42



Linux kernel introduction Kernel sources Kernel configuration

Overview of kernel options (7)

Device drivers (cont)

Watchdog support
Multifunction drivers are drivers that do not fit in any
other category because the device offers multiple
functionality at the same time
Multimedia support, contains the V4L and DVB
subsystems, for video capture, webcams, AM/FM cards,
DVB adapters
Graphics support, infrastructure and drivers for
framebuffers
Sound card support, the OSS and ALSA sound
infrastructures and the corresponding drivers
HID devices, support for the devices that conform to the
HID specification (Human Input Devices)

Rafal Kapela — Linux Kernel 37/42



Linux kernel introduction Kernel sources Kernel configuration

Overview of kernel options (8)

Device drivers (cont)
USB support

Infrastructure
Host controller drivers
Device drivers, for devices connected to the embedded
system
Gadget controller drivers
Gadget drivers, to let the embedded system act as a
mass-storage device, a serial port or an Ethernet adapter

MMC/SD/SDIO support
LED support
Real Time Clock drivers
Voltage and current regulators
Staging drivers, crappy drivers being cleaned up

Rafal Kapela — Linux Kernel 38/42



Linux kernel introduction Kernel sources Kernel configuration

Overview of kernel options (9)

For some categories of devices the driver is not
implemented inside the kernel

Printers
Scanners
Graphics drivers used by X.org
Some USB devices

For these devices, the kernel only provides a mechanism
to access the hardware, the driver is implemented in
userspace

Rafal Kapela — Linux Kernel 39/42



Linux kernel introduction Kernel sources Kernel configuration

Overview of kernel options (10)

File systems

The common Linux filesystems for block devices: ext2,
ext3, ext4
Less common filesystems: XFS, JFS, ReiserFS, GFS2,
OCFS2, Btrfs
CD-ROM filesystems: ISO9660, UDF
DOS/Windows filesystems: FAT and NTFS
Pseudo filesystems: proc and sysfs
Miscellaneous filesystems, with amongst other flash
filesystems such as JFFS2, UBIFS, SquashFS, cramfs
Network filesystems, with mainly NFS and SMB/CIFS

Kernel hacking

Debugging features useful for kernel developers

Rafal Kapela — Linux Kernel 40/42



Linux kernel introduction Kernel sources Kernel configuration

Resources
If you want to gain some knowledge by your own...

Wikipedia – Embedded system
http://en.wikipedia.org/wiki/Embedded_system

Embedded System Market – Global Industry Analysis
http://www.prnewswire.com/

Free Electrons - embedded Linux experts
http://free-electrons.com/

Rafal Kapela — Linux Kernel 41/42

http://en.wikipedia.org/wiki/Embedded_system
http://www.prnewswire.com/
http://free-electrons.com/


Linux kernel introduction Kernel sources Kernel configuration

Questions ?

Rafal Kapela
rafal.kapela@put.poznan.pl

Rafal Kapela — Linux Kernel 42/42


	Linux kernel introduction
	Kernel sources
	Kernel configuration

