
Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Linux Kernel
Peripheral Devices for Embedded Systems

Rafal Kapela

June 26, 2016

Rafal Kapela — Linux Kernel 1/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Outline

1 Cross-compiling the kernel

2 Using kernel modules

3 Developing Kernel Modules

Rafal Kapela — Linux Kernel 2/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Outline

1 Cross-compiling the kernel

2 Using kernel modules

3 Developing Kernel Modules

Rafal Kapela — Linux Kernel 3/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Cross-compiling the kernel

When you compile a Linux kernel for another CPU architecture

Much faster than compiling natively, when the target
system is much slower than your GNU/Linux workstation.

Much easier as development tools for your GNU/Linux
workstation are much easier to find.

To make the difference with a native compiler,
cross-compiler executables are prefixed by the name of
the target system, architecture and sometimes library.
Examples:
mips-linux-gcc, the prefix is mips-linux-
arm-linux-gnueabi-gcc, the prefix is arm-linux-gnueabi-

Rafal Kapela — Linux Kernel 4/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Specifying cross-compilation (1)

The CPU architecture and cross-compiler prefix are defined
through the ARCH and CROSS COMPILE variables in the
toplevel Makefile.

ARCH is the name of the architecture. It is defined by the
name of the subdirectory in arch/ in the kernel sources

Example: arm if you want to compile a kernel for the
arm architecture.

CROSS COMPILE is the prefix of the cross compilation
tools

Example: arm-linux- if your compiler is arm-linux-gcc

Rafal Kapela — Linux Kernel 5/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Specifying cross-compilation (2)

Two solutions to define ARCH and CROSS COMPILE:

Pass ARCH and CROSS COMPILE on the make

command line:
make ARCH=arm CROSS COMPILE=arm-linux- ...
Drawback: it is easy to forget to pass these variables when you run any
make command, causing your build and configuration to be screwed up.

Define ARCH and CROSS COMPILE as environment

variables:
export ARCH=arm; export CROSS COMPILE=arm-linux-
Drawback: it only works inside the current shell or terminal. You could
put these settings in a file that you source every time you start working
on the project. If you only work on a single architecture with always the
same toolchain, you could even put these settings in your /.bashrc file to
make them permanent and visible from any terminal.

Rafal Kapela — Linux Kernel 6/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Specifying cross-compilation (2)

Two solutions to define ARCH and CROSS COMPILE:

Pass ARCH and CROSS COMPILE on the make

command line:
make ARCH=arm CROSS COMPILE=arm-linux- ...
Drawback: it is easy to forget to pass these variables when you run any
make command, causing your build and configuration to be screwed up.

Define ARCH and CROSS COMPILE as environment

variables:
export ARCH=arm; export CROSS COMPILE=arm-linux-
Drawback: it only works inside the current shell or terminal. You could
put these settings in a file that you source every time you start working
on the project. If you only work on a single architecture with always the
same toolchain, you could even put these settings in your /.bashrc file to
make them permanent and visible from any terminal.

Rafal Kapela — Linux Kernel 6/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Predefined configuration files

Default configuration files available, per board or
per-CPU family

They are stored in arch/arch/configs/, and are just
minimal .config files
This is the most common way of configuring a kernel for
embedded platforms

Run make help to find if one is available for your platform

To load a default configuration file, just run
make acme defconfig

This will overwrite your existing .config file!

To create your own default configuration file
make savedefconfig, to create a minimal configuration
file
mv defconfig arch/arch/configs/myown defconfig

Rafal Kapela — Linux Kernel 7/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Configuring the kernel

After loading a default configuration file, you can adjust
the configuration to your needs with the normal xconfig,
gconfig or menuconfig interfaces

You can also start the configuration from scratch without
loading a default configuration file

As the architecture is different from your host
architecture

Some options will be different from the native
configuration (processor and architecture specific
options, specific drivers, etc.)
Many options will be identical (filesystems, network
protocols, architecture-independent drivers, etc.)

Make sure you have the support for the right CPU, the
right board and the right device drivers.

Rafal Kapela — Linux Kernel 8/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Device Tree

Many embedded architectures have a lot of
non-discoverable hardware.
Depending on the architecture, such hardware is either
described using C code directly within the kernel, or using
a special hardware description language in a Device Tree.
ARM, PowerPC, OpenRISC, ARC, Microblaze are
examples of architectures using the Device Tree.
A Device Tree Source, written by kernel developers, is
compiled into a binary Device Tree Blob, passed at boot
time to the kernel.

There is one different Device Tree for each
board/platform supported by the kernel, available in
arch/arm/boot/dts/board.dtb.

The bootloader must load both the kernel image and the
Device Tree Blob in memory before starting the kernel.

Rafal Kapela — Linux Kernel 9/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Building and installing the kernel

Run make
Copy the final kernel image to the target storage

can be uImage, zImage, vmlinux, bzImage in arch/arch/boot
copying the Device Tree Blob might be necessary as well, they
are available in arch/arch/boot/dts

make install is rarely used in embedded development, as
the kernel image is a single file, easy to handle

It is however possible to customize the make install behaviour
in arch/arch/boot/install.sh

make modules install is used even in embedded
development, as it installs many modules and description
files

make INSTALL MOD PATH=dir/ modules install
The INSTALL MOD PATH variable is needed to install the
modules in the target root filesystem instead of your host root
filesystem.

Rafal Kapela — Linux Kernel 10/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Booting with U-Boot

U-Boot requires a special kernel image format: uImage
uImage is generated from zImage using the mkimage
tool. It is done automatically by the kernel make uImage
target.
On some ARM platforms, make uImage requires passing
a LOADADDR environment variable, which indicates at
which physical memory address the kernel will be
executed.

In addition to the kernel image, U-Boot can also pass a
Device Tree Blob to the kernel.
The typical boot process is therefore:

1 Load uImage at address X in memory
2 Load board.dtb at address Y in memory
3 Start the kernel with bootm X - Y (the - in the middle

indicates no initramfs)

Rafal Kapela — Linux Kernel 11/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Kernel command line

In addition to the compile time configuration, the kernel
behaviour can be adjusted with no recompilation using
the kernel command line
The kernel command line is a string that defines various
arguments to the kernel

It is very important for system configuration
root= for the root filesystem (covered later)
console= for the destination of kernel messages
and many more, documented in kernel-parameters.txt in the
kernel sources

This kernel command line is either
Passed by the bootloader. In U-Boot, the contents of the
bootargs environment variable is automatically passed to the
kernel
Built into the kernel, using the CONFIG CMDLINE option.

Rafal Kapela — Linux Kernel 12/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Outline

1 Cross-compiling the kernel

2 Using kernel modules

3 Developing Kernel Modules

Rafal Kapela — Linux Kernel 13/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Advantages of modules

Modules make it easy to develop drivers without
rebooting: load, test, unload, rebuild, load...

Useful to keep the kernel image size to the minimum
(essential in GNU/Linux distributions for PCs).

Also useful to reduce boot time: you don’t spend time
initializing devices and kernel features that you only need
later.

Caution: once loaded, have full control and privileges in
the system. No particular protection. That’s why only the
root user can load and unload modules.

Rafal Kapela — Linux Kernel 14/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Module dependencies

Some kernel modules can depend on other modules,
which need to be loaded first.

Example: the usb-storage module depends on the
scsi mod, libusual and usbcore modules.

Dependencies are described in
/lib/modules/kernel-version/modules.dep
This file is generated when you run make modules install.

Rafal Kapela — Linux Kernel 15/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Kernel log

When a new module is loaded, related information is available
in the kernel log.

The kernel keeps its messages in a circular buffer (so that
it doesn’t consume more memory with many messages)

Kernel log messages are available through the dmesg
command (diagnostic message)

Kernel log messages are also displayed in the system
console (console messages can be filtered by level using
the loglevel kernel parameter, or completely disabled with
the quiet parameter).

Note that you can write to the kernel log from userspace
too:
echo ”Debug info” > /dev/kmsg

Rafal Kapela — Linux Kernel 16/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Module utilities (1)

modinfo module name
modinfo module path.ko
Gets information about a module: parameters, license,
description and dependencies.
Very useful before deciding to load a module or not.

sudo insmod module path.ko
Tries to load the given module. The full path to the
module object file must be given.

Rafal Kapela — Linux Kernel 17/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Understanding module loading issues

When loading a module fails, insmod often doesn’t give
you enough details!

Details are often available in the kernel log.

Example:

$ sudo insmod ./intr_monitor.ko

insmod: error inserting ’./intr_monitor.ko’: -1 Device or resource busy

$ dmesg

[17549774.552000] Failed to register handler for irq channel 2

Rafal Kapela — Linux Kernel 18/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Module utilities (2)

sudo modprobe module name
Most common usage of modprobe: tries to load all the
modules the given module depends on, and then this
module. Lots of other options are available. modprobe
automatically looks in /lib/modules/version/ for the
object file corresponding to the given module name.

lsmod
Displays the list of loaded modules
Compare its output with the contents of /proc/modules!

Rafal Kapela — Linux Kernel 19/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Module utilities (3)

sudo rmmod module name
Tries to remove the given module.
Will only be allowed if the module is no longer in use (for
example, no more processes opening a device file)

sudo modprobe -r module name
Tries to remove the given module and all dependent
modules (which are no longer needed after removing the
module)

Rafal Kapela — Linux Kernel 20/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Passing parameters to modules

Find available parameters:
modinfo snd-intel8x0m

Through insmod:
sudo insmod ./snd-intel8x0m.ko index=-2

Through modprobe:
Set parameters in /etc/modprobe.conf or in any file in
/etc/modprobe.d/:
options snd-intel8x0m index=-2

Through the kernel command line, when the driver is
built statically into the kernel:
snd-intel8x0m.index=-2

snd-intel8x0m is the driver name
index is the driver parameter name
-2 is the driver parameter value

Rafal Kapela — Linux Kernel 21/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Outline

1 Cross-compiling the kernel

2 Using kernel modules

3 Developing Kernel Modules

Rafal Kapela — Linux Kernel 22/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Hello Module 1/3

/* hello.c */

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

static int __init hello_init(void)

{

pr_alert("Good morrow");

pr_alert("to this fair assembly.\n");

return 0;

}

...

Rafal Kapela — Linux Kernel 23/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Hello Module 2/3

...

static void __exit hello_exit(void)

{

pr_alert("Alas, poor world, what treasure");

pr_alert("hast thou lost!\n");

}

module_init(hello_init);

module_exit(hello_exit);

MODULE_LICENSE("GPL");

MODULE_DESCRIPTION("Greeting module");

MODULE_AUTHOR("William Shakespeare");

Rafal Kapela — Linux Kernel 24/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Hello Module 3/3

init

removed after initialization (static kernel or module.)

exit

discarded when module compiled statically into the
kernel.

Rafal Kapela — Linux Kernel 25/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Hello Module Explanations

Headers specific to the Linux kernel: linux/xxx.h

No access to the usual C library, we’re doing kernel
programming

An initialization function

Called when the module is loaded, returns an error code
(0 on success, negative value on failure)
Declared by the module init macro: the name of the
function doesn’t matter, even though modulename init()
is a convention.

A cleanup function

Called when the module is unloaded
Declared by the module exit macro.

Metadata information declared using MODULE LICENSE,
MODULE DESCRIPTION and MODULE AUTHOR

Rafal Kapela — Linux Kernel 26/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Symbols Exported to Modules 1/2

From a kernel module, only a limited number of kernel
functions can be called

Functions and variables have to be explicitly exported by
the kernel to be visible from a kernel module

Two macros are used in the kernel to export functions
and variables:

EXPORT SYMBOL(symbolname), which exports a
function or variable to all modules
EXPORT SYMBOL GPL(symbolname), which exports a
function or variable only to GPL modules

A normal driver should not need any non-exported
function.

Rafal Kapela — Linux Kernel 27/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Symbols exported to modules 2/2

Rafal Kapela — Linux Kernel 28/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Module License

Several usages
Used to restrict the kernel functions that the module can
use if it isn’t a GPL licensed module

Difference between EXPORT SYMBOL and
EXPORT SYMBOL GPL

Used by kernel developers to identify issues coming from
proprietary drivers, which they can’t do anything about
(“Tainted” kernel notice in kernel crashes and oopses).
Useful for users to check that their system is 100% free
(check /proc/sys/kernel/tainted)

Values
GPL compatible (see include/linux/license.h: GPL, GPL
v2, GPL and additional rights, Dual MIT/GPL, Dual
BSD/GPL, Dual MPL/GPL)
Proprietary

Rafal Kapela — Linux Kernel 29/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Compiling a Module

Two solutions
Out of tree

When the code is outside of the kernel source tree, in a
different directory
Advantage: Might be easier to handle than
modifications to the kernel itself
Drawbacks: Not integrated to the kernel
configuration/compilation process, needs to be built
separately, the driver cannot be built statically

Inside the kernel tree

Well integrated into the kernel
configuration/compilation process
Driver can be built statically if needed

Rafal Kapela — Linux Kernel 30/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Modules and Kernel Version

To be compiled, a kernel module needs access to the
kernel headers, containing the definitions of functions,
types and constants.

Two solutions

Full kernel sources
Only kernel headers (linux-headers-* packages in
Debian/Ubuntu distributions)

The sources or headers must be configured

Many macros or functions depend on the configuration

A kernel module compiled against version X of kernel
headers will not load in kernel version Y

modprobe / insmod will say Invalid module format

Rafal Kapela — Linux Kernel 31/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

New Driver in Kernel Sources 1/2

To add a new driver to the kernel sources:
Add your new source file to the appropriate source
directory. Example: drivers/usb/serial/navman.c
Single file drivers in the common case, even if the file is
several thousand lines of code big. Only really big drivers
are split in several files or have their own directory.
Describe the configuration interface for your new driver
by adding the following lines to the Kconfig file in this
directory:

config USB_SERIAL_NAVMAN

tristate "USB Navman GPS device"

depends on USB_SERIAL

help

To compile this driver as a module, choose M

here: the module will be called navman.

Rafal Kapela — Linux Kernel 32/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

New Driver in Kernel Sources 2/2

Add a line in the Makefile file based on the Kconfig
setting: obj-$(CONFIG USB SERIAL NAVMAN) +=
navman.o

It tells the kernel build system to build navman.c when
the USB SERIAL NAVMAN option is enabled. It works
both if compiled statically or as a module.

Run make xconfig and see your new options!
Run make and your new files are compiled!
See kbuild/ for details and more elaborate examples like
drivers with several source files, or drivers in their own
subdirectory, etc.

Rafal Kapela — Linux Kernel 33/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Hello Module with Parameters 1/2

/* hello_param.c */

#include <linux/init.h>

#include <linux/module.h>

#include <linux/moduleparam.h>

MODULE_LICENSE("GPL");

/* A couple of parameters that can be passed in:

how many times we say hello, and to whom */

static char *whom = "world";

module_param(whom, charp, 0);

static int howmany = 1;

module_param(howmany, int, 0);

Rafal Kapela — Linux Kernel 34/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Hello Module with Parameters 2/2

static int __init hello_init(void)

{

int i;

for (i = 0; i < howmany; i++)

pr_alert("(%d) Hello, %s\n", i, whom);

return 0;

}

static void __exit hello_exit(void)

{

pr_alert("Goodbye, cruel %s\n", whom);

}

module_init(hello_init);

module_exit(hello_exit);

Rafal Kapela — Linux Kernel 35/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Declaring a module parameter

#include <linux/moduleparam.h>

module_param(

name, /* name of an already defined variable */

type, /* either byte, short, ushort, int, uint...

charp, or bool. (checked at run time!) */

perm /* for /sys/module/<module_name>/

parameters/<param>,

0: no such module parameter value file */

);

/* Example */

int irq=5;

module_param(irq, int, S_IRUGO);

Modules parameter arrays are also possible with
module param array, but they are less common.

Rafal Kapela — Linux Kernel 36/38



Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Resources
If you want to gain some knowledge by your own...

Wikipedia – Embedded system
http://en.wikipedia.org/wiki/Embedded_system

Greg Kroah-Hartman, O’Reilly, Linux Kernel in a Nutshell,
Dec 2006.
http://www.kroah.com/lkn/

Free Electrons - embedded Linux experts
http://free-electrons.com/

Rafal Kapela — Linux Kernel 37/38

http://en.wikipedia.org/wiki/Embedded_system
http://www.kroah.com/lkn/
http://free-electrons.com/


Cross-compiling the kernel Using kernel modules Developing Kernel Modules

Questions ?

Rafal Kapela
rafal.kapela@put.poznan.pl

Rafal Kapela — Linux Kernel 38/38


	Cross-compiling the kernel
	Using kernel modules
	Developing Kernel Modules

