
INTRODUCTION TO 

CLOUD SYSTEMS 
Lecture 1 – Course introduction, 

Microservices, Docker



Agenda
• Course objectives

• Changes in business

• The monolith

• Problems of older applications

• Microservices

• Docker

Introduction to cloud systems 2



Course objectives
• Microservices achitecture

• Docker and Kubernetes

• Alpine, UPI based images

• Kubernetes CNIs

• Service Mesh

• Server telemetry collecting and processing

• Dynamic scheduling

• Data processing acceleration

• Security Development Lifecycle

• Confidential Computing

• Out of band Management

• Smart Edge Open

Introduction to cloud systems 3



Changes in business

Introduction to cloud systems 4



The monolith
Parts of Enterprise Applications:
• client-side user interface (rich desktop or web based)

• server-side application

• database (consisting of many tables inserted into a 
common, and usually relational, database 
management system). 

Introduction to cloud systems 5

The server-side application receives requests,

executes domain logic, retrieves and/or updates

data from the database, and responds back to the

client. This server-side application is a monolith — a

single logical executable. Any changes to the

system involve building and deploying a new version

of the server-side application.



The monolith

Introduction to cloud systems 6

Modularity within the application is typically based on features of the programming language (e.g.,

packages, modules). Over time the monolith grows larger as business needs change and as new

functionality is added. It becomes increasingly difficult to keep a good modular structure, making it

harder to keep changes that ought to only affect one module within that module.

In order to scale the application, we would simply create more instances of that process. It is not

possible to scale the components independently.

Even a small change to the application requires that the entire monolith be rebuilt

and deployed.



Problem of older applications
Many older cloud applications use a monolithic architecture.

Introduction to cloud systems 7

Even though these legacy apps can serve multiple

tenants, they’re built as a large and cumbersome set

of highly interdependent components.

• A failure in one component can have devastating 

impact on another component, resulting in 

service outages for many or all tenants. 

• Updating these systems requires taking them 

offline, which limits user access during the 

upgrade process. 

• The problems of monolithic services are 

exacerbated when they are deployed in 

proprietary data centers with limited hardware 

because the hardware constraints further limit 

the availability and scalability of the software 

resources.



Microservices
Microservices is an architecture that promotes breaking down a big
monolithic application into smaller and simpler services (organized
around business capabilities) to be built and deployed independently,
communicating with lightweight mechanisms (often REST based).

Introduction to cloud systems 8

The “micro” in 

microservices refers to 

the scope of the service’s 

functionality, not the 

number of Lines of Code.



Microservices
Key characteristics of microservices are:

• Domain-Driven Design. Functional decomposition can be easily achieved 

using Eric Evans’s DDD approach.

• Single Responsibility Principle. Each service is responsible for a single 

part of the functionality and does it well.

• Explicitly Published Interface. A producer service publishes an interface 

that is used by a consumer service.

• Independent DURS (Deploy, Update, Replace, Scale). Each service can be 

independently deployed, updated, replaced, and scaled.

• Smart Endpoints and Dumb Pipes. Each microservice owns its domain 

logic and communicates with others through simple protocols such as REST 

over HTTP

Introduction to cloud systems 9



Microservices
• Agility. Microservices foster an organization of small, independent teams that take ownership of their 

services. Teams act within a small and well understood context, and are empowered to work more 
independently and more quickly. This shortens development cycle times. You benefit significantly from 
the aggregate throughput of the organization.

• Flexible Scaling. Microservices allow each service to be independently scaled to meet demand for the 
application feature it supports. This enables teams to right-size infrastructure needs, accurately measure 
the cost of a feature, and maintain availability if a service experiences a spike in demand.

• Easy Deployment Microservices enable continuous integration and continuous delivery, making it easy 
to try out new ideas and to roll back if something doesn’t work. The low cost of failure enables 
experimentation, makes it easier to update code, and accelerates time-to-market for new features.

• Technological Freedom. Microservices architectures don’t follow a “one size fits all” approach. Teams 
have the freedom to choose the best tool to solve their specific problems. As a consequence, teams 
building microservices can choose the best tool for each job.

• Reusable Code. Dividing software into small, well-defined modules enables teams to use functions for 
multiple purposes. A service written for a certain function can be used as a building block for another 
feature. This allows an application to bootstrap off itself, as developers can create new capabilities 
without writing code from scratch.

• Resilience Service. independence increases an application’s resistance to failure. In a monolithic 
architecture, if a single component fails, it can cause the entire application to fail. With microservices, 
applications handle total service failure by degrading functionality and not crashing the entire application. 

Introduction to cloud systems 10



Microservices
A microservices architecture consists of a collection of small, autonomous

services. Each service is self-contained and should implement a single business

capability within a bounded context. A bounded context is a natural division within

a business and provides an explicit boundary within which a domain model exists.

Introduction to cloud systems 11



Microservices

Introduction to cloud systems 12

Related pattern



Microservices
Message queueing
The use of Message Queues provides a way for parts of the application to push messages to a
queue asynchronously and ensure they are delivered to the correct destination. To implement
message queuing, a message broker like RabbitMQ is a good option. The message broker
provides temporary message storage when the receiving service is busy or disconnected.

Introduction to cloud systems 13



Microservices

RabbitMQ

Introduction to cloud systems 14



Docker
Docker is a set of 

platform as a service 

(PaaS) products that 

use OS-level 

virtualization to 

deliver software in 

packages called 

containers.

Introduction to cloud systems 15



Docker

Introduction to cloud systems 16

It is not…
➢…a virtual machine, or virtualization framework.

➢ Like Vagrant, VirtualBox, VMWare

➢ (Runs in a VM on OSX and Windows hosts.)

➢…SaaS, or other business service.
➢ Like Elastic Container Service (ECS), Docker Cloud, etc.

➢...a deployment or orchestration framework itself.
➢ Like Marathon, Consul, Puppet, or Chef

➢Docker Swarm provides something similar to this



Docker

Docker platform enables building

advanced environments based on OS-

level virtualization technologies. There is

no need to install components in the

system such as SQL database,

Wordpress, Postgresql, etc. You can

download a ready-made software

package with the required minimum to

run. Application images prepared to run

on Docker contain the runtime

environment, most often it is the minimum

version of Linux.

Introduction to cloud systems 17



Docker

Introduction to cloud systems 18

Virtual machines Docker containers

Virtual machines include the 

application, the required 

libraries or binaries, and a full 

guest operating system. Full 

virtualization requires more 

resources than 

containerization.

Containers include the 

application and all its 

dependencies. However, they 

share the OS kernel with 

other containers, running as 

isolated processes in user 

space on the host operating 

system. (Except in Hyper-V 

containers, where each 

container runs inside of a 

special virtual machine per 

container.)



Docker

Introduction to cloud systems 19

Docker uses a client-server architecture. 

The Docker client talks to the Docker 

daemon, which does the heavy lifting of 

building, running, and distributing your 

Docker containers. The Docker client and 

daemon can run on the same system, or 

you can connect a Docker client to a 

remote Docker daemon. The Docker client 

and daemon communicate using a REST 

API, over UNIX sockets or a network 

interface. Another Docker client is Docker 

Compose, that lets you work with 

applications consisting of a set of 

containers. 

Architecture



Docker

Introduction to cloud systems 20

• The Docker daemon (dockerd) listens for Docker API requests and manages Docker objects such as images, containers, 

networks, and volumes. A daemon can also communicate with other daemons to manage Docker services.

• The Docker client (docker) is the primary way that many Docker users interact with Docker. When you use commands 

such as docker run, the client sends these commands to dockerd, which carries them out. The docker command uses the 

Docker API. The Docker client can communicate with more than one daemon.

• Docker Desktop is an easy-to-install application for your Mac or Windows environment that enables you to build and 

share containerized applications and microservices. Docker Desktop includes the Docker daemon (dockerd), the Docker 

client (docker), Docker Compose, Docker Content Trust, Kubernetes, and Credential Helper. For more information, see 

Docker Desktop.

• A Docker registry stores Docker images. Docker Hub is a public registry that anyone can use, and Docker is configured 

to look for images on Docker Hub by default. You can even run your own private registry. When you use the docker pull or 

docker run commands, the required images are pulled from your configured registry. When you use the docker push 

command, your image is pushed to your configured registry.

Architecture



Docker

Introduction to cloud systems 21

➢Images are “snapshots” of a file system

➢They are binary files.

➢They contain files, binaries and libraries added at “build time.”

➢Images that are just an operating system are base images

ubuntu

Base Images

centos busyboxdebianfedora



Docker

Introduction to cloud systems 22

CI/CD



Docker

Introduction to cloud systems 23

Commands



Docker

Introduction to cloud systems 24

Example in few steps



Docker

Introduction to cloud systems 25

1. Download

MSSQL



Docker

Introduction to cloud systems 26

docker run -e 'ACCEPT_EULA=Y' -e 

'SA_PASSWORD=***' -p 1433:1433 -d 

mcr.microsoft.com/mssql/server

2. Run MSSQL

3. Download

example data



Docker

Introduction to cloud systems 27

Create backup folder in Docker 

container:

docker exec -it container_name mkdir

/var/opt/mssql/backup

Copy database backup from Windows 

into container with Linux:

docker cp AdventureWorks2019.bak 

container_name:/var/opt/mssql/backup

From SQL Server Management Studio -

restore backup

4. Backup data



Docker

• Create new API project with Entity Framework - ApiExample

• Scaffold database with Docker SQL connection

• Add simple API endpoint - GetSalesOrderHeaderById(int id)

Introduction to cloud systems 28

5. Create simple client



Docker

Docker compose is configuration 

file for project. You can create 

relations between separate 

container like .NET API 

application hosted in Docker and 

container with database run in 

Docker too.

Introduction to cloud systems 29

6. Create configuration file



Docker

Introduction to cloud systems 30

Container use cases

• “Lift and shift” existing applications into modern cloud architectures - Some organizations use containers to 

migrate existing applications into more modern environments. While this practice delivers some of the basic benefits 

of operating system virtualization, it does not offer the full benefits of a modular, container-based application 

architecture.

• Refactor existing applications for containers - Although refactoring is much more intensive than lift-and-shift 

migration, it enables the full benefits of a container environment.

• Develop new container-native applications - Much like refactoring, this approach unlocks the full benefits of 

containers.

• Provide better support for microservices architectures - Distributed applications and microservices can be more 

easily isolated, deployed, and scaled using individual container building blocks.

• Provide DevOps support for continuous integration and deployment (CI/CD) - Container technology supports 

streamlined build, test, and deployment from the same container images.

• Provide easier deployment of repetitive jobs and tasks - Containers are being deployed to support one or more 

similar processes, which often run in the background, such as ETL functions or batch jobs.



Docker

Introduction to cloud systems 31

Benefits of containers

• The primary advantage of containers, especially compared to a VM, is providing a level of abstraction that makes 

them lightweight and portable.

• Lightweight: Containers share the machine OS kernel, eliminating the need for a full OS instance per application and 

making container files small and easy on resources. Their smaller size, especially compared to virtual machines, 

means they can spin up quickly and better support cloud-native applications that scale horizontally.  

• Portable and platform independent: Containers carry all their dependencies with them, meaning that software can be 

written once and then run without needing to be re-configured across laptops, cloud, and on-premises computing 

environments.

• Supports modern development and architecture: Due to a combination of their deployment portability/consistency 

across platforms and their small size, containers are an ideal fit for modern development and application patterns—

such as DevOps, serverless, and microservices—that are built are regular code deployments in small increments.

• Improves utilization: Like VMs before them, containers enable developers and operators to improve CPU and memory 

utilization of physical machines. Where containers go even further is that because they also enable microservice

architectures, application components can be deployed and scaled more granularly, an attractive alternative to having 

to scale up an entire monolithic application because a single component is struggling with load.


	Sekcja domyślna
	Slide 1: Introduction to cloud systems 
	Slide 2: Agenda
	Slide 3: Course objectives
	Slide 4: Changes in business
	Slide 5: The monolith
	Slide 6: The monolith
	Slide 7: Problem of older applications 
	Slide 8: Microservices
	Slide 9: Microservices
	Slide 10: Microservices
	Slide 11: Microservices
	Slide 12: Microservices
	Slide 13: Microservices
	Slide 14: Microservices
	Slide 15: Docker
	Slide 16: Docker
	Slide 17: Docker
	Slide 18: Docker
	Slide 19: Docker
	Slide 20: Docker
	Slide 21: Docker
	Slide 22: Docker
	Slide 23: Docker
	Slide 24: Docker
	Slide 25: Docker
	Slide 26: Docker
	Slide 27: Docker
	Slide 28: Docker
	Slide 29: Docker
	Slide 30: Docker
	Slide 31: Docker


