
INTRODUCTION TO

CLOUD SYSTEMS
Lecture 2 – Kubernetes

Previous lecture

Introduction to cloud systems 2

Kubernetes

Introduction to cloud systems 3

Kubernetes is a portable, extensible, open-source platform

for managing containerized workloads and services, that

facilitates both declarative configuration and automation. It

has a large, rapidly growing ecosystem. Kubernetes

services, support, and tools are widely available.

The name Kubernetes originates from Greek, meaning helmsman or pilot.

K8s as an abbreviation results from counting the eight letters between the

"K" and the "s". Google open-sourced the Kubernetes project in 2014.

Kubernetes combines over 15 years of Google's experience running

production workloads at scale with best-of-breed ideas and practices from

the community.

Kubernetes

Introduction to cloud systems 4

Kubernetes

Introduction to cloud systems 5

Containers have become popular because they provide extra benefits, such as:

• Agile application creation and deployment: increased ease and efficiency of container

image creation compared to VM image use.

• Continuous development, integration, and deployment: provides for reliable and

frequent container image build and deployment with quick and efficient rollbacks (due

to image immutability).

• Dev and Ops separation of concerns: create application container images at

build/release time rather than deployment time, thereby decoupling applications from

infrastructure.

• Observability: not only surfaces OS-level information and metrics, but also application

health and other signals.

• Environmental consistency across development, testing, and production: Runs the

same on a laptop as it does in the cloud.

Kubernetes

Introduction to cloud systems 6

• Cloud and OS distribution portability: Runs on Ubuntu, RHEL, CoreOS, on-premises,

on major public clouds, and anywhere else.

• Application-centric management: Raises the level of abstraction from running an OS

on virtual hardware to running an application on an OS using logical resources.

• Loosely coupled, distributed, elastic, liberated micro-services: applications are broken

into smaller, independent pieces and can be deployed and managed dynamically – not

a monolithic stack running on one big single-purpose machine.

• Resource isolation: predictable application performance.

• Resource utilization: high efficiency and density.

Kubernetes

Introduction to cloud systems 7

Why you need Kubernetes and what it can do

• Service discovery and load balancing Kubernetes can expose a container using

the DNS name or using their own IP address. If traffic to a container is high,

Kubernetes is able to load balance and distribute the network traffic so that the

deployment is stable.

• Storage orchestration Kubernetes allows you to automatically mount a storage

system of your choice, such as local storages, public cloud providers, and more.

• Automated rollouts and rollbacks You can describe the desired state for your

deployed containers using Kubernetes, and it can change the actual state to the

desired state at a controlled rate. For example, you can automate Kubernetes to

create new containers for your deployment, remove existing containers and adopt all

their resources to the new container.

Kubernetes

Introduction to cloud systems 8

Why you need Kubernetes and what it can do

• Automatic bin packing You provide Kubernetes with a cluster of nodes that it can

use to run containerized tasks. You tell Kubernetes how much CPU and memory

(RAM) each container needs. Kubernetes can fit containers onto your nodes to

make the best use of your resources.

• Self-healing Kubernetes restarts containers that fail, replaces containers, kills

containers that don't respond to your user-defined health check, and doesn't

advertise them to clients until they are ready to serve.

• Secret and configuration management Kubernetes lets you store and manage

sensitive information, such as passwords, OAuth tokens, and SSH keys. You can

deploy and update secrets and application configuration without rebuilding your

container images, and without exposing secrets in your stack configuration.

Kubernetes

Introduction to cloud systems 9

Components

Kubernetes

Introduction to cloud systems 10

Control Plane Components

The API server is a component of the Kubernetes

control plane that exposes the Kubernetes API.

The API server is the front end for the Kubernetes

control plane.

The main implementation of a Kubernetes API

server is kube-apiserver. kube-apiserver is

designed to scale horizontally— it scales by

deploying more instances. You can run several

instances of kube-apiserver and balance traffic

between those instances.

kube-apiserver

Kubernetes

Introduction to cloud systems 11

Control Plane Components

Consistent and highly-available key value store

used as Kubernetes' backing store for all cluster

data.

etcd

Kubernetes

Introduction to cloud systems 12

Control Plane Components

Control plane component that watches for newly

created Pods with no assigned node, and selects

a node for them to run on.

Factors taken into account for scheduling

decisions include: individual and collective

resource requirements, hardware/software/policy

constraints, affinity and anti-affinity specifications,

data locality, inter-workload interference, and

deadlines.

kube-scheduler

Kubernetes

Introduction to cloud systems 13

Control Plane Components

Control plane component that runs controller

processes.

Logically, each controller is a separate process,

but to reduce complexity, they are all compiled into

a single binary and run in a single process.

Some types of these controllers are:
• Node controller: Responsible for noticing and

responding when nodes go down.

• Job controller: Watches for Job objects that

represent one-off tasks, then creates Pods to run

those tasks to completion.

• Endpoints controller: Populates the Endpoints

object (that is, joins Services & Pods).

• Service Account & Token controllers: Create

default accounts and API access tokens for new

namespaces.

kube-controller-manager

Kubernetes

Introduction to cloud systems 14

Control Plane Components

A Kubernetes control plane component that

embeds cloud-specific control logic. The cloud

controller manager lets you link your cluster into

your cloud provider's API, and separates out the

components that interact with that cloud platform

from components that only interact with your

cluster.

The cloud-controller-manager only runs controllers

that are specific to your cloud provider. If you are

running Kubernetes on your own premises, or in a

learning environment inside your own PC, the

cluster does not have a cloud controller manager.

cloud-controller-manager

Kubernetes

Introduction to cloud systems 15

Node Components

An agent that runs on each node in the cluster. It

makes sure that containers are running in a Pod.

The kubelet takes a set of PodSpecs that are

provided through various mechanisms and

ensures that the containers described in those

PodSpecs are running and healthy. The kubelet

doesn't manage containers which were not

created by Kubernetes.

kubelet

Kubernetes

Introduction to cloud systems 16

Node Components

kube-proxy is a network proxy that runs on each

node in your cluster, implementing part of the

Kubernetes Service concept.

kube-proxy maintains network rules on nodes.

These network rules allow network communication

to your Pods from network sessions inside or

outside of your cluster.

kube-proxy uses the operating system packet

filtering layer if there is one and it's available.

Otherwise, kube-proxy forwards the traffic itself.

kube-proxy

Kubernetes

Introduction to cloud systems 17

Node Components

The container runtime is the software that is

responsible for running containers.

Kubernetes supports container runtimes such as

containerd, CRI-O, and any other implementation

of the Kubernetes CRI (Container Runtime

Interface).

Container runtime

Kubernetes

Introduction to cloud systems 18

Addons

Addons use Kubernetes resources (DaemonSet, Deployment, etc) to implement cluster features. Because these are

providing cluster-level features, namespaced resources for addons belong within the kube-system namespace.

• Cluster DNS - in addition to the other DNS server(s) in your environment, which serves DNS records for Kubernetes

services. Containers started by Kubernetes automatically include this DNS server in their DNS searches.

• Web UI (Dashboard) - general purpose, web-based UI for Kubernetes clusters. It allows users to manage and

troubleshoot applications running in the cluster, as well as the cluster itself.

• Container Resource Monitoring - records generic time-series metrics about containers in a central database, and

provides a UI for browsing that data.

• Cluster-level Logging - mechanism is responsible for saving container logs to a central log store with search/browsing

interface.

Kubernetes

Introduction to cloud systems 19

Nodes

Kubernetes

Introduction to cloud systems 20

Nodes

Kubernetes

Introduction to cloud systems 21

Nodes

Kubernetes runs your workload by placing

containers into Pods to run on Nodes. A node may

be a virtual or physical machine, depending on the

cluster. Each node is managed by the control plane

and contains the services necessary to run Pods.

Typically you have several nodes in a cluster; in a

learning or resource-limited environment, you might

have only one node.

The components on a node include the kubelet, a

container runtime, and the kube-proxy.

Kubernetes

Introduction to cloud systems 22

Nodes - Management

There are two main ways to have Nodes added to the API server:

• The kubelet on a node self-registers to the control plane

• You (or another human user) manually add a Node object

After you create a Node object, or the kubelet on a node self-registers, the control plane

checks whether the new Node object is valid. For example, if you try to create a Node

from the following JSON manifest:

{
 "kind": "Node",
 "apiVersion": "v1",
 "metadata": {
 "name": "10.240.79.157",
 "labels": {
 "name": "my-first-k8s-node"
 }
 }
}

Kubernetes creates a Node object internally (the

representation). Kubernetes checks that a kubelet

has registered to the API server that matches the

metadata.name field of the Node. If the node is

healthy (i.e. all necessary services are running),

then it is eligible to run a Pod. Otherwise, that node

is ignored for any cluster activity until it becomes

healthy.

Kubernetes

Introduction to cloud systems 23

Nodes - Management

Key characteristics:

• Node name uniqueness - The name identifies a Node. Two Nodes cannot

have the same name at the same time.

• Self-registration of Nodes - When the kubelet flag --register-node is true (the

default), the kubelet will attempt to register itself with the API server. This is

the preferred pattern, used by most distros.

Kubernetes

Introduction to cloud systems 24

Nodes - Statuses

A Node's status contains the following information:

• Addresses

• Conditions

• Capacity and Allocatable

• Info

Kubernetes

Introduction to cloud systems 25

Nodes - Statuses

A Node's status contains the following information:

• Addresses

• Conditions

• Capacity and Allocatable

• Info

The usage of these fields varies depending on your cloud provider or bare metal configuration.

• HostName: The hostname as reported by the node's kernel. Can be overridden via the kubelet --

hostname-override parameter.

• ExternalIP: Typically the IP address of the node that is externally routable (available from outside

the cluster).

• InternalIP: Typically the IP address of the node that is routable only within the cluster.

Kubernetes

Introduction to cloud systems 26

Nodes - Statuses

A Node's status contains the following information:

• Addresses

• Conditions

• Capacity and Allocatable

• Info

Ready True if the node is healthy and ready to accept pods, False if the node is not healthy and is

not accepting pods, and Unknown if the node controller has not heard from the node in the

last node-monitor-grace-period (default is 40 seconds)

DiskPressure True if pressure exists on the disk size—that is, if the disk capacity is low; otherwise False

MemoryPressure True if pressure exists on the node memory—that is, if the node memory is low;

otherwise False

PIDPressure True if pressure exists on the processes—that is, if there are too many processes on the

node; otherwise False

NetworkUnavailable True if the network for the node is not correctly configured, otherwise False

Kubernetes

Introduction to cloud systems 27

Nodes - Statuses

A Node's status contains the following information:

• Addresses

• Conditions

• Capacity and Allocatable

• Info
"conditions": [
 {
 "type": "Ready",
 "status": "True",
 "reason": "KubeletReady",
 "message": "kubelet is posting ready status",
 "lastHeartbeatTime": "2019-06-05T18:38:35Z",
 "lastTransitionTime": "2019-06-05T11:41:27Z"
 }
]

Kubernetes

Introduction to cloud systems 28

Nodes - Statuses

A Node's status contains the following information:

• Addresses

• Conditions

• Capacity and Allocatable

• Info

Describes the resources available on the node: CPU, memory, and the

maximum number of pods that can be scheduled onto the node.

Kubernetes

Introduction to cloud systems 29

Nodes - Statuses

A Node's status contains the following information:

• Addresses

• Conditions

• Capacity and Allocatable

• Info

Describes general information about the node, such as kernel version,

Kubernetes version (kubelet and kube-proxy version), container runtime

details, and which operating system the node uses. The kubelet gathers this

information from the node and publishes it into the Kubernetes API.

	Sekcja domyślna
	Slide 1: Introduction to cloud systems
	Slide 2: Previous lecture
	Slide 3: Kubernetes
	Slide 4: Kubernetes
	Slide 5: Kubernetes
	Slide 6: Kubernetes
	Slide 7: Kubernetes
	Slide 8: Kubernetes
	Slide 9: Kubernetes
	Slide 10: Kubernetes
	Slide 11: Kubernetes
	Slide 12: Kubernetes
	Slide 13: Kubernetes
	Slide 14: Kubernetes
	Slide 15: Kubernetes
	Slide 16: Kubernetes
	Slide 17: Kubernetes
	Slide 18: Kubernetes
	Slide 19: Kubernetes
	Slide 20: Kubernetes
	Slide 21: Kubernetes
	Slide 22: Kubernetes
	Slide 23: Kubernetes
	Slide 24: Kubernetes
	Slide 25: Kubernetes
	Slide 26: Kubernetes
	Slide 27: Kubernetes
	Slide 28: Kubernetes
	Slide 29: Kubernetes

