
INTRODUCTION TO

CLOUD SYSTEMS
Lecture 3 – Kubernetes p.2

Previous lecture

2Introduction to cloud systems

Kubernetes
Kubernetes API

3

The Kubernetes API lets you query and manipulate the state of API objects

in Kubernetes (for example: Pods, Namespaces, ConfigMaps, and Events).

Most operations can be performed through the kubectl command-line

interface or other command-line tools, such as kubeadm, which in turn use

the API. However, you can also access the API directly using REST calls.

The core of Kubernetes' control plane is the API

server. The API server exposes an HTTP API that

lets end users, different parts of your cluster, and

external components communicate with one

another.

Introduction to cloud systems

Kubernetes
Kubernetes objects

4

Kubernetes objects are persistent entities in the Kubernetes system.

Kubernetes uses these entities to represent the state of your cluster.

Specifically, they can describe:

• What containerized applications

are running (and on which nodes)

• The resources available to those

applications

• The policies around how those

applications behave, such as

restart policies, upgrades, and

fault-tolerance

Introduction to cloud systems

Kubernetes
Kubernetes objects

5

A Kubernetes object is a "record of intent"--once you create the object, the

Kubernetes system will constantly work to ensure that object exists. By

creating an object, you're effectively telling the Kubernetes system what you

want your cluster's workload to look like; this is your cluster's desired state.

To work with Kubernetes objects--whether to create, modify, or delete them--

you'll need to use the Kubernetes API. When you use the kubectl command-

line interface, for example, the CLI makes the necessary Kubernetes API

calls for you. You can also use the Kubernetes API directly in your own

programs using one of the Client Libraries.

Introduction to cloud systems

Kubernetes
Kubernetes objects - Object Spec and Status

6

Almost every Kubernetes object includes two nested object fields that govern

the object's configuration: the object spec and the object status. For objects

that have a spec, you have to set this when you create the object, providing a

description of the characteristics you want the resource to have: its desired

state.

The status describes the current state of the object, supplied and updated by

the Kubernetes system and its components. The Kubernetes control plane

continually and actively manages every object's actual state to match the

desired state you supplied.

Introduction to cloud systems

Kubernetes
Kubernetes objects - Object Spec and Status

7

For example: in Kubernetes, a Deployment is an object that can represent an

application running on your cluster. When you create the Deployment, you

might set the Deployment spec to specify that you want three replicas of the

application to be running. The Kubernetes system reads the Deployment spec

and starts three instances of your desired application--updating the status to

match your spec. If any of those instances should fail (a status change), the

Kubernetes system responds to the difference between spec and status

by making a correction--in this case, starting a replacement instance.

Introduction to cloud systems

Kubernetes
Kubernetes objects - Describing a Kubernetes object

8

When you create an object in

Kubernetes, you must provide the object

spec that describes its desired state, as

well as some basic information about the

object (such as a name). When you use

the Kubernetes API to create the object

(either directly or via kubectl), that API

request must include that information as

JSON in the request body. Most often,

you provide the information to kubectl in a

.yaml file. kubectl converts the

information to JSON when making the

API request.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 2 # tells deployment to run 2 pods (template)
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.14.2
 ports:
 - containerPort: 80

Introduction to cloud systemsIntroduction to cloud systems

Kubernetes
Kubernetes objects - Describing a Kubernetes object

9

One way to create a Deployment using a .yaml file like the one above is to use the

kubectl apply command in the kubectl command-line interface, passing the .yaml file as

an argument. Here's an example:

kubectl apply -f https://k8s.io/examples/application/deployment.yaml

Introduction to cloud systems

Kubernetes
Kubernetes objects - Required Fields

10

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 2 # tells deployment to run 2 pods (template)
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.14.2
 ports:
 - containerPort: 80

In the .yaml file for the Kubernetes object

you want to create, you'll need to set

values for the following fields:

• apiVersion - Which version of the

Kubernetes API you're using to create

this object

• kind - What kind of object you want

to create

• metadata - Data that helps uniquely

identify the object, including a name

string, UID, and optional namespace

• spec - What state you desire for the

object

Introduction to cloud systems

Kubernetes
Kubernetes objects - Management

11

Management

technique Operates on

Recommended

environment Supported writers Learning curve

Imperative

commands

Live objects Development

projects

1+ Lowest

Imperative object

configuration

Individual files Production

projects

1 Moderate

Declarative object

configuration

Directories of files Production

projects

1+ Highest

Introduction to cloud systems

Kubernetes
Kubernetes objects - Management

12

Imperative commands

When using imperative commands, a

user operates directly on live objects in a

cluster. The user provides operations to

the kubectl command as arguments or

flags.

This is the recommended way to get

started or to run a one-off task in a

cluster. Because this technique operates

directly on live objects, it provides no

history of previous configurations.

Run an instance of the nginx container

by creating a Deployment object:

kubectl create deployment nginx --image nginx

Example

Introduction to cloud systems

Kubernetes
Kubernetes objects - Management

13

Imperative commands

Advantages compared to object configuration:

• Commands are expressed as a single action word.

• Commands require only a single step to make changes to the cluster.

Disadvantages compared to object configuration:

• Commands do not integrate with change review processes.

• Commands do not provide an audit trail associated with changes.

• Commands do not provide a source of records except for what is live.

• Commands do not provide a template for creating new objects.

Introduction to cloud systems

Kubernetes
Kubernetes objects - Management

14

Imperative object configuration

In imperative object configuration, the

kubectl command specifies the operation

(create, replace, etc.), optional flags and

at least one file name. The file specified

must contain a full definition of the object

in YAML or JSON format.

Create the objects defined in a

configuration file:

kubectl create -f nginx.yaml

Example

Delete the objects defined in two

configuration files:

kubectl delete -f nginx.yaml -f redis.yaml

Update the objects defined in a

configuration file by overwriting the live

configuration:
kubectl replace -f nginx.yaml

Introduction to cloud systems

Kubernetes
Kubernetes objects - Management

15

Advantages compared to imperative commands:

• Object configuration can be stored in a source control system such as Git.

• Object configuration can integrate with processes such as reviewing changes before

push and audit trails.

• Object configuration provides a template for creating new objects.

Disadvantages compared to imperative commands:

• Object configuration requires basic understanding of the object schema.

• Object configuration requires the additional step of writing a YAML file.

Imperative object configuration

Introduction to cloud systems

Kubernetes
Kubernetes objects - Management

16

Advantages compared to declarative object configuration:

• Imperative object configuration behavior is simpler and easier to understand.

• As of Kubernetes version 1.5, imperative object configuration is more mature.

Disadvantages compared to declarative object configuration:

• Imperative object configuration works best on files, not directories.

• Updates to live objects must be reflected in configuration files, or they will be lost during

the next replacement.

Imperative object configuration

Introduction to cloud systems

Kubernetes
Kubernetes objects - Management

17

Declarative object configuration

When using declarative object

configuration, a user operates on object

configuration files stored locally, however

the user does not define the operations

to be taken on the files. Create, update,

and delete operations are automatically

detected per-object by kubectl. This

enables working on directories, where

different operations might be needed for

different objects.

Process all object configuration files in

the configs directory, and create or

patch the live objects. You can first diff

to see what changes are going to be

made, and then apply:
kubectl diff -f configs/

kubectl apply -f configs/

Example

Recursively process directories:

kubectl diff -R -f configs/

kubectl apply -R -f configs/

Introduction to cloud systems

Kubernetes
Kubernetes objects - Management

18

Advantages compared to imperative object configuration:

• Changes made directly to live objects are retained, even if they are not merged back

into the configuration files.

• Declarative object configuration has better support for operating on directories and

automatically detecting operation types (create, patch, delete) per-object.

Disadvantages compared to imperative object configuration:

• Declarative object configuration is harder to debug and understand results when they

are unexpected.

• Partial updates using diffs create complex merge and patch operations.

Declarative object configuration

Introduction to cloud systems

Kubernetes
Kubernetes objects - Object Names and IDs

19

Each object in your cluster has a Name that is unique for that type of

resource. Every Kubernetes object also has a UID that is unique across

your whole cluster.

For example, you can only have one Pod named myapp-1234 within the

same namespace, but you can have one Pod and one Deployment that

are each named myapp-1234.

Introduction to cloud systems

Kubernetes
Kubernetes objects - Object Names and IDs

20

A client-provided string that refers to an object in a resource URL, such as

/api/v1/pods/some-name.

Only one object of a given kind can have a given name at a time.

However, if you delete the object, you can make a new object with the

same name.

Names

Introduction to cloud systems

Kubernetes
Kubernetes objects - Object Names and IDs

21

Four types of commonly used name constraints for resources:

Names

Most resource types require a name that can be used as a DNS subdomain name as

defined in RFC 1123. This means the name must:

• contain no more than 253 characters

• contain only lowercase alphanumeric characters, '-' or '.'

• start with an alphanumeric character

• end with an alphanumeric character

DNS Subdomain Names

Introduction to cloud systems

Kubernetes
Kubernetes objects - Object Names and IDs

22

Four types of commonly used name constraints for resources:

Names

Some resource types require their names to follow the DNS label standard as defined

in RFC 1123. This means the name must:

• contain at most 63 characters

• contain only lowercase alphanumeric characters or '-'

• start with an alphanumeric character

• end with an alphanumeric character

RFC 1123 Label Names

Introduction to cloud systems

Kubernetes
Kubernetes objects - Object Names and IDs

23

Four types of commonly used name constraints for resources:

Names

Some resource types require their names to follow the DNS label standard as defined

in RFC 1035. This means the name must:

• contain at most 63 characters

• contain only lowercase alphanumeric characters or '-'

• start with an alphabetic character

• end with an alphanumeric character

RFC 1035 Label Names

Introduction to cloud systems

Kubernetes
Kubernetes objects - Object Names and IDs

24

Four types of commonly used name constraints for resources:

Names

Some resource types require their names to be able to be safely encoded as a path

segment. In other words, the name may not be "." or ".." and the name may not

contain "/" or "%".

Path Segment Names

Introduction to cloud systems

Kubernetes
Kubernetes objects - Object Names and IDs

25

Names

Here's an example manifest for a Pod named nginx-demo.

apiVersion: v1
kind: Pod
metadata:
 name: nginx-demo
spec:
 containers:
 - name: nginx
 image: nginx:1.14.2
 ports:
 - containerPort: 80

Introduction to cloud systems

Kubernetes
Kubernetes objects - Object Names and IDs

26

UIDs

A Kubernetes systems-generated string to uniquely identify objects.

Every object created over the whole lifetime of a Kubernetes cluster has a

distinct UID. It is intended to distinguish between historical occurrences of

similar entities.

Kubernetes UIDs are universally unique identifiers (also known as UUIDs).

UUIDs are standardized as ISO/IEC 9834-8 and as ITU-T X.667.

Introduction to cloud systems

Kubernetes
Kubernetes objects - Namespaces

27

In Kubernetes, namespaces provides a mechanism for isolating groups of

resources within a single cluster. Names of resources need to be unique

within a namespace, but not across namespaces. Namespace-based

scoping is applicable only for namespaced objects (e.g. Deployments,

Services, etc) and not for cluster-wide objects (e.g. StorageClass, Nodes,

PersistentVolumes, etc).

Introduction to cloud systems

Kubernetes
Kubernetes objects - Namespaces

28

When to Use Multiple Namespaces?

Namespaces are intended for use in environments with many users spread across

multiple teams, or projects. For clusters with a few to tens of users, you should not

need to create or think about namespaces at all.

Namespaces provide a scope for names. Names of resources need to be unique

within a namespace, but not across namespaces. Namespaces cannot be nested

inside one another and each Kubernetes resource can only be in one namespace.

Namespaces are a way to divide cluster resources between multiple users (via

resource quota).

Introduction to cloud systems

Kubernetes
Kubernetes objects - Namespaces

29

Working with Namespaces

You can list the current namespaces in a cluster using:

kubectl get namespace

NAME STATUS AGE
default Active 1d
kube-node-lease Active 1d
kube-public Active 1d
kube-system Active 1d

Introduction to cloud systems

Kubernetes
Kubernetes objects - Namespaces

30

Working with Namespaces

NAME STATUS AGE
default Active 1d
kube-node-lease Active 1d
kube-public Active 1d
kube-system Active 1d

Kubernetes starts with four initial namespaces:

• default The default namespace for objects with no other namespace

• kube-system The namespace for objects created by the Kubernetes system

• kube-public This namespace is created automatically and is readable by all users

(including those not authenticated). This namespace is mostly reserved for cluster

usage, in case that some resources should be visible and readable publicly

throughout the whole cluster. The public aspect of this namespace is only a

convention, not a requirement.

• kube-node-lease This namespace holds Lease objects associated with each node.

Node leases allow the kubelet to send heartbeats so that the control plane can

detect node failure.

Introduction to cloud systems

Kubernetes
Kubernetes objects - Namespaces

31

Working with Namespaces

kubectl run nginx --image=nginx --namespace=<insert-namespace-name-here>
kubectl get pods --namespace=<insert-namespace-name-here>

Setting the namespace for a request
To set the namespace for a current request, use the --namespace flag.

Setting the namespace preference
You can permanently save the namespace for all subsequent kubectl commands in that context.

kubectl config set-context --current --namespace=<insert-namespace-name-here>
Validate it
kubectl config view --minify | grep namespace:

Introduction to cloud systems

	Sekcja domyślna
	Slide 1: Introduction to cloud systems
	Slide 2: Previous lecture
	Slide 3: Kubernetes
	Slide 4: Kubernetes
	Slide 5: Kubernetes
	Slide 6: Kubernetes
	Slide 7: Kubernetes
	Slide 8: Kubernetes
	Slide 9: Kubernetes
	Slide 10: Kubernetes
	Slide 11: Kubernetes
	Slide 12: Kubernetes
	Slide 13: Kubernetes
	Slide 14: Kubernetes
	Slide 15: Kubernetes
	Slide 16: Kubernetes
	Slide 17: Kubernetes
	Slide 18: Kubernetes
	Slide 19: Kubernetes
	Slide 20: Kubernetes
	Slide 21: Kubernetes
	Slide 22: Kubernetes
	Slide 23: Kubernetes
	Slide 24: Kubernetes
	Slide 25: Kubernetes
	Slide 26: Kubernetes
	Slide 27: Kubernetes
	Slide 28: Kubernetes
	Slide 29: Kubernetes
	Slide 30: Kubernetes
	Slide 31: Kubernetes

