
INTRODUCTION TO 

CLOUD SYSTEMS 
Lecture 4 – Alpine, UBI Images, CNI, eBPF



Previous lecture

2Introduction to cloud systems



Alpine Linux

Introduction to cloud systems 3

Alpine Linux is a Linux distribution built around musl

libc and BusyBox. The image is only 5 MB in size 

and has access to a package repository that is much 

more complete than other BusyBox based images. 

This makes Alpine Linux a great image base for 

utilities and even production applications. 

Pros:

• It has a smaller footprint, and therefore a smaller 

attack surface

• It takes up less disk space.

• It offers a strong base for customization.

• It’s built with simplicity in mind.



UBI Images
Red Hat Universal Base Images (UBI) are OCI-compliant 

container base operating system images with complementary 

runtime languages and packages that are freely redistributable. 

They are built from portions of Red Hat Enterprise Linux (RHEL). 

UBI images can be obtained from the Red Hat container catalog 

and be built and deployed anywhere. Red Hat Universal Base 

Images (UBI) provide the same quality trusted foundation for 

building container images as their non-UBI predecessors (rhel6, 

rhel7, rhel-init, and rhel-minimal base images), but offer more 

freedom in how they are used and distributed.

Introduction to cloud systems 4



CNI – Container Network Interface
CNI is a network framework that allows the dynamic configuration of networking

resources through a group of Go-written specifications and libraries.

Introduction to cloud systems 5



CNI – Container Network Interface
A CNI plugin is responsible for inserting a network interface into 
the container network namespace (e.g., one end of a virtual 
ethernet (veth) pair) and making any necessary changes on the 
host (e.g., attaching the other end of the veth into a bridge). It then 
assigns an IP address to the interface and sets up the routes 
consistent with the IP Address Management section by invoking 
the appropriate IP Address Management (IPAM) plugin.

The container/pod initially has no network interface. The container 
runtime calls the CNI plugin with verbs such as ADD, DEL, 
CHECK, etc. ADD creates a new network interface for the 
container, and details of what is to be added are passed to CNI via 
JSON payload.

Introduction to cloud systems 6



CNI – Container Network Interface
Two major parts of the CNI:

1. Specification documents

• Libcni – runtime implementation

• Skel – referenece plugin implementation

2. Refereneces and example plugins

• Interface plugins – ptp, bridge, macvlan…

• Other plugins – portmap, bandwidth, tuning

Introduction to cloud systems 7



CNI – Container Network Interface
Specification:

• Vendor neutral

• Also used by CRI-O, Mesos, CloudFoundry…

• Describe a basic execution flow and configuration format 

for network operations

• Mostly try to keep things simple and backwards compatible

Introduction to cloud systems 8



CNI – Container Network Interface
Most popular CNI frameworks:

• Flannel

• Calico

• Cilium

• Weavenet

• Canal

Introduction to cloud systems 9



CNI – Container Network Interface
Calico - an open source networking and network security solution 
for containers, virtual machines, and native host-based workloads. 
Powering 1.5M+ nodes daily across 166 countries. 

Pros:

• Multi dataplanes (Linux eBPF, Standard Linux, Windows HNS)

• Support for Network Policies

• High network performance

• Active community

Cons

• No multicast support

Introduction to cloud systems 10



eBPF

Introduction to cloud systems 11

eBPF stands for “extended Berkeley Packet Filter”.



eBPF

Introduction to cloud systems 12

A virtual machine embedded within the Linux kernel. It allows 

small programs to be loaded into the kernel, 

and attached to hooks, which are triggered when 

some event occurs.



eBPF

Introduction to cloud systems 13

eBPF is typically used to trace user-space processes, and have a lot of 

advantages. It’s a safe and useful method to ensure:

• Speed and performance. eBPF can move packet processing from the kernel-space and into the 

user-space. Likewise, eBPF is a just-in-time (JIT) compiler. After the bytecode is compiled, eBPF

is invoked rather than a new interpretation of the bytecode for every method.

• Low intrusiveness. When leveraged as a debugger, eBPF doesn’t need to stop a program to 

observe its state.

• Security. Programs are effectively sandboxed, meaning kernel source code remains protected 

and unchanged. The verification step ensures that resources don’t get choked up with programs 

that run infinite loops.



eBPF

Introduction to cloud systems 14

• Convenience. It’s less work to create code that hooks kernel functions than it is to build and 

maintain kernel modules.

• Unified tracing. eBPF gives you a single, powerful, and accessible framework for tracing 

processes. This increases visibility and security.

• Programmability. Using eBPF helps increase the feature-richness of an environment without 

adding additional layers. Likewise, since code is run directly in the kernel, it’s possible to store 

data between eBPF events instead of dumping it like other tracers do.

• Expressiveness. eBPF is expressive, capable of performing functions usually only found in high-

level languages.



eBPF

Introduction to cloud systems 15

Hook overview

eBPF programs are event-driven and are run when the kernel or an 

application passes a certain hook point. Pre-defined hooks include system 

calls, function entry/exit, kernel tracepoints, network events, and several 

others.



eBPF

Introduction to cloud systems 16

Hook overview

If a predefined hook does not 

exist for a particular need, it is 

possible to create a kernel 

probe (kprobe) or user probe 

(uprobe) to attach eBPF

programs almost anywhere in 

kernel or user applications.



eBPF

Introduction to cloud systems 17

How are eBPF programs written?

In a lot of scenarios, eBPF is not used directly but indirectly via projects like 

Cilium, bcc, or bpftrace which provide an abstraction on top of eBPF and do 

not require to write programs directly but instead offer the ability to specify 

intent-based definitions which are then implemented with eBPF.



eBPF

Introduction to cloud systems 18

How are eBPF programs written?

If no higher-level abstraction exists, programs need to be written directly. The 

Linux kernel expects eBPF programs to be loaded in the form of bytecode. 

While it is of course possible to write bytecode directly, the more common 

development practice is to leverage a compiler suite like LLVM to compile 

pseudo-C code into eBPF bytecode.



eBPF

Introduction to cloud systems 19

Hook overview

There are several classes of hooks to which eBPF programs can be attached 

within the kernel. The capabilities of an eBPF program depend hugely on the 

hook to which it is attached:

• Tracing

• Traffic Control (tc).

• XDP, or “eXpress Data Path”

• More



eBPF

Introduction to cloud systems 20

Hook overview

• Tracing programs can be attached to a significant proportion of the functions in the 

kernel. Tracing programs are useful for collecting statistics and deep-dive 

debugging of the kernel. Most tracing hooks only allow read-only access to the data 

that the function is processing but there are some that allow data to be modified. 

The Calico team use tracing programs to help debug Calico during development; 

for example, to figure out why the kernel unexpectedly dropped a packet.



eBPF

Introduction to cloud systems 21

Hook overview

• Traffic Control (tc) programs can be attached at ingress and egress to a given 

network device. The kernel executes the programs once for each packet. Since the 

hooks are for packet processing, the kernel allows the programs to modify or 

extend the packet, drop the packet, mark it for queueing, or redirect the packet to 

another interface. Calico’s eBPF dataplane is based on this type of hook; we use tc

programs to load balance Kubernetes services, to implement network policy, and, 

to create a fast-path for traffic of established connections.



eBPF

Introduction to cloud systems 22

Hook overview

• XDP, or “eXpress Data Path”, is actually the name of an eBPF hook. Each network 

device has an XDP ingress hook that is triggered once for each incoming packet 

before the kernel allocates a socket buffer for the packet. XDP can give outstanding 

performance for use cases such as DoS protection (as supported in Calico’s 

standard Linux dataplane) and ingress load balancing (as used in facebook’s

Katran). The downside of XDP is that it requires network device driver support to 

get good performance. XDP isn’t sufficient on its own to implement all of the logic 

needed for Kubernetes pod networking, but a combination of XDP and Traffic 

Control hooks works well.



eBPF

Introduction to cloud systems 23

Hook overview

• Several types of socket programs hook into various operations on sockets, 

allowing the eBPF program to, for example, change the destination IP of a newly-

created socket, or force a socket to bind to the “correct” source IP address. Calico 

uses such programs to do connect-time load balancing of Kubernetes Services; this 

reduces overhead because there is no DNAT on the packet processing path.

• There are various security-related hooks that allow for program behaviour to be 

policed in various ways. For example, the seccomp hooks allow for syscalls to be 

policed in fine-grained ways.


	Sekcja domyślna
	Slide 1: Introduction to cloud systems 
	Slide 2: Previous lecture
	Slide 3: Alpine Linux
	Slide 4: UBI Images
	Slide 5: CNI – Container Network Interface
	Slide 6: CNI – Container Network Interface
	Slide 7: CNI – Container Network Interface
	Slide 8: CNI – Container Network Interface
	Slide 9: CNI – Container Network Interface
	Slide 10: CNI – Container Network Interface
	Slide 11: eBPF
	Slide 12: eBPF
	Slide 13: eBPF
	Slide 14: eBPF
	Slide 15: eBPF
	Slide 16: eBPF
	Slide 17: eBPF
	Slide 18: eBPF
	Slide 19: eBPF
	Slide 20: eBPF
	Slide 21: eBPF
	Slide 22: eBPF
	Slide 23: eBPF


