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o Heterogeneous compute environment 

o Architecture comparison 

• CPU 

• GPU 

• FPGA 

o How to match the workload to compute device 

o Alternative for edge computing 

 

 

 

Compute architectures - outline 
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o One or more CPU (each core with own local cache) 

o Shared LLC (last level cache) 

o Set of accelerators: 

• GPUs 

• FPGAs 

• other specialized hardware 

 

Shared-memory computing system 
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CPU architecture 
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o Advantages: 

• automatic parallelism on sequential code 

• lower latency when compared to offload acceleration 

• accurate branch prediction 

• out-of-order superscalar execution 

• better energy efficiency than GPU configuration 

 

CPU architecture 
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o Several types of parallelism to achieve performance: 

• SIMD (single instruction, multiple data) data parallelism 

• Thread-level parallelism (multiple threads, different logical cores)  

• Instruction-level parallelism 

 

CPU architecture 
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o SIMD data parallelism 

• each work-item can map to CPU SIMD lane 

• vector data tapes are used to explicitly specify SIMD operations 

• compiler can perform loop vectorization to generate SIMD code 

• one loop iteration maps to a CPU SIMD lane 

• multiple loop iterations execute together in SIMD fashion 

 

CPU architecture 
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o Thread-level parallelism  

• CPU core and hyper-thread parallelism (a machine with 2 cores  
and 4 hyper-threads can execute 4 work-groups in parallel) 

• different work-groups can execute on different logical cores in parallel 

 

CPU architecture 
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o Massively-parallel, more specialized cores than CPUs 

o Optimized for aggregate throughput across all cores 

o Vector architecture (efficiently processes vector data) 

o More silicon space to compute, less to cache and control 

 

 

 

 

 

 

 

 
VE – vector engine (each VE can process multiple SIMD instruction streams) 

SM – streaming multiprocessor (multiple VEs combine to form a compute unit with shared local 
memory and synchronization mechanisms) 

GPU architecture 
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GPUs rely on large data-parallel workloads to achieve performance 

• every work-item is mapped to a SIMD lane 

• sub-groups are mapped to the vector engine 

• work-groups, which include work-items that can synchronize and share local 
data, are assigned for execution on streaming multiprocessors 

• single-task kernels are rarely utilized (NDRange kernels are needed to fully 
populate deep execution pipeline) 

 

GPU architecture 
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o Massive array of small processing units 

o Resources are connected by a mesh 
of programmable wires 

o Compute engines are defined by the user 

o Data flows through customized  
deep pipelines  

 

FPGA architecture 
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Pipeline parallelism can be combined with other types of parallelism: 

o task parallelism (multiple pipelines) 

o superscalar execution (multiple independent instructions  
executing in parallel) 

FPGA architecture 
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FPGA Advantages: 

o Efficiency: no need for control units, instruction fetch and other execution 
overhead 

o Flexibility: can be reconfigured to accommodate different functions and 
custom data type 

o Custom Instructions: instructions not supported by CPUs can be easily 
implemented and executed on FPGAs 

o Rich I/O: FPGA core can interact directly with various memory and custom 
interfaces 

FPGA architecture 
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o The operations in the kernel are laid out spatially 

o The key to performance is to keep the deep pipeline fully occupied 

o With single-task kernels, the FPGA attempts to pipeline loop execution 

o Every clock cycle, successive iterations of the loop enter the first stage of the pipeline 

 

FPGA execution 
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o CPUs:  

• the most widely used generic processors  
(not as compute-dense as GPUs, and not as compute-efficient as FPGAs) 

• modern CPUs support SIMD instructions 

• the most flexible with the broadest library support 

o GPUs: 

• the most compute dense, massively data-parallel accelerators 

• employ a single instruction, multiple threads execution model (SIMT) 

• optimized for continuous reads and writes 

o FPGAs: 

• compute engines defined by the user 

• reconfigurable, fine-grained datapath (1-bit resolution) 

• dependent kernels are deeply pipelined, independent are executed in parallel 

 

Architecture summary 
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o GPU: image processing, deep learning, data analysis 

• Little or no dependency across processed data 

• Simple control flow (minimal branching and loop divergence) 

• Matches data-types supported by the GPU 
 

o FPGA: genomics sequencing, machine learning, image lossless compression 

• Suitable for algorithms that are easily expressed in serial code and  
may have dependencies across data elements 
 

o CPU: task orchestration for heterogeneous computing system 

• Can still have superior performance in compute applications  
when vector, memory, and thread optimizations are applied 

 

Workload examples 
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How many transistors does it cost to implement a single multiplication in a 
network? 

1. As a dedicated digital circuit: 

•  m.in. 38 transistors/bit 

2. As a reconfigurable digital circuit: 

•  32k transistors/weight 

 (in 40 LUTs) 

TinyML - motivation 
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o The average consumer CPU will draw between 65 to 85 watts of power, 
while the average GPU consumes anywhere between 200 to 500 watts.  

o A typical microcontroller draws power in the order of milliwatts or microwatts, 
which is a thousand times less power consumption. This energy efficiency 
enables the TinyML devices to run on battery power while running ML 
applications on the edge. 

o TinyML with its support for frameworks that include TensorFlow Lite, uTensor, 
and Arm’s CMSIS-NN, brings together AI and small connected devices. 

 

TinyML - motivation 
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Definition: This is a concept of implementing mainly deep neural networks 
directly on embedded devices with highly limited resources. 

 

This approach may include: 

o adapting (reducing) the network architecture to reduced hardware resources 

o reduction of power consumption during processing (e.g. for use in battery 
powered applications) 

 

TinyML can be understood as a network algorithm compression method. 

 

TinyML 
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o Energy efficiency: Microcontrollers consume very little power, which 
delivers benefits in remote installations and mobile devices. 

o Low latency: By processing data locally at the edge, data doesn't need to 
be transmitted to the cloud for inference. This greatly reduces device 
latency. 

o Privacy: Data can be stored locally, not on cloud servers. 

o Reduced bandwidth: With decreased dependency on the cloud for 
inference, bandwidth concerns are minimized. 

 

o The future of TinyML using MCUs is promising for small edge devices and 
modest applications where an FPGA, GPU or CPU are not viable options. 

 

Benefits of TinyML 
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Related content 

• Data Parallel C++ (programming of heterogeneous systems using SYCL) 

• Intel oneAPI programming guide 

• Intel DevCloud  

• TinyML is bringing deep learning models to microcontrollers 
https://thenextweb.com/news/tinyml-deep-learning-microcontrollers-syndication 

• ESP32-CAM: TinyML Image Classification 
https://mjrobot.org/2022/02/10/esp32-cam-tinyml-image-classification-fruits-vs-veggies/ 


