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How many transistors does it cost to implement a single multiplication in a 
network? 

1. As a dedicated digital circuit: 

•  m.in. 38 transistors/bit 

2. As a reconfigurable digital circuit: 

•  32k transistors/weight 

 (in 40 LUTs) 

TinyML - motivation 
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o The average consumer CPU will draw between 65 to 85 watts of power, 
while the average GPU consumes anywhere between 200 to 500 watts.  

o A typical microcontroller draws power in the order of milliwatts or microwatts, 
which is a thousand times less power consumption. This energy efficiency 
enables the TinyML devices to run on battery power while running ML 
applications on the edge. 

o TinyML with its support for frameworks that include TensorFlow Lite, uTensor, 
and Arm’s CMSIS-NN, brings together AI and small connected devices. 

 

TinyML - motivation 
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Definition: This is a concept of implementing mainly deep neural networks 
directly on embedded devices with highly limited resources. 

 

This approach may include: 

o adapting (reducing) the network architecture to reduced hardware resources 

o reduction of power consumption during processing (e.g. for use in battery 
powered applications) 

 

TinyML can be understood as a network algorithm compression method. 

 

TinyML 



Classroom materials 

Quantization: 
o The default representation of weights in the model is 32-bit floating point 

numbers 

o Quantization reduces the accuracy to 8-bit integers 

 

• The model running on the processor after quantization runs faster 

• The technique is dedicated to devices with small memory 

• It brings special effects for complex models, i.e. those that have a lot of 
weights. 

TinyML - techniques 
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Pruning: 
o It involves cutting parameters for reduction model size 

o Results in deterioration of model parameters 

o It usually requires iterative modification of the model 

o It is difficult to define a universal, i.e. model-independent pruning method 

 

 

TinyML - techniques 
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o TensorFlow Lite Converter – to convert a model imported from the 
TensorFlow format 

o TensorFlow Lite Interpreter – to load the finished model to the 
microcontroller's memory 

TinyML - tools 

TensorFlow API 
TensorFlow Lite 

Converter 
TensorFlow Lite 

Interpreter 

GPU 

CPU 
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Input models: 

o Saved model - classic TF model on disk 
• Keras H5 format – hierarchical data format HDF5 

o Keras model – based on API Keras high-level interface  

o models built of functions - based on API Keras low-level interface 

 

The resulting TensorFlow Lite model: 

.tflite – FlatBuffer format 

 

Conversion options: 

o Compliance options – permission to use operators 

o Optimization options – defining the optimization used for the conversion 

o Metadata options – adding metadata to the model 

TensorFlow Lite – conversion process 
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o Energy efficiency: Microcontrollers consume very little power, which 
delivers benefits in remote installations and mobile devices. 

o Low latency: By processing data locally at the edge, data doesn't need to be 
transmitted to the cloud for inference. This greatly reduces device latency. 

o Privacy: Data can be stored locally, not on cloud servers. 

o Reduced bandwidth: With decreased dependency on the cloud for 
inference, bandwidth concerns are minimized. 

 

o The future of TinyML using MCUs is promising for small edge devices and 
modest applications where an FPGA, GPU or CPU are not viable options. 

 

Benefits of TinyML 
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Bare Metal 

Definition: An approach based on programming the application directly "on the 
hardware" (with direct access to the microcontroller registers), i.e. without using 
a programming interface, e.g. an operating system. 

 

 

loop 

interruption 

event 

One of the more commonly used bare-metal 

implementations is the infinite-time super-loop that the 

microcontroller executes. The execution of the loop is 

stopped by an interruption event. 
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Bare Metal vs. RTOS 

RTOS: 

System kernel with scheduler 

Device drivers 

Multithreading 

Prioritizing tasks 

Most likely a quick starting point 

 
 
 
 

Hardware 

 
 

RTOS 

Application 
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Bare Metal vs. RTOS 

BARE METAL: 

Customized solution 

Solution planned in detal 

Lower costs of software execution 

Most likely a longer starting point 

Harder to develop project in the future 

 
 
 
 

Hardware 

Application 
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MicroPython 

o A lightweight version of the Python 3 programming language 

o A subset of the Python standard library 

o Optimized to work with microcontrollers 

o Requirements: 256 KB for code and 16 KB of RAM 

o The functionality includes: 

• Integers of arbitrary precision 

• Interactive prompt 

• Exception handling 

• Comprehension letter 

  

 https://micropython.org/ 

 Porty: cc3200, esp32, esp8266, mimxrt, nrf,  
  renesas-ra, rp2, samd, stm32 
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ESP32-CAM specification 

o Clock frequency: up to 160 MHz 

o 520KB RAM 

o 512 kB FLASH 

o WiFi 802.11 b/g/n module 

o Security: TKIP, WEP, CRC, CCMP, WPA/WPA2, WPS 

o UART/SPI/I2C/PWM/ADC/DAC interfaces 

o OV2640 camera (2 MPx resolution) 

o Possibility to connect the OV2640 or OV7670 camera 

o microSD slot (up to 4GB) 

o User LED 

o RESET button 
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1. Prepare the model 

Bare Metal AI 

Dataset 
Model 

definition 
(CNN) 

Training Saving 

.h5 format 

Bare Metal & RTOS Bare Metal 
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2. ESP conversion 

Bare Metal AI (based on ESP) 

Model 

.h5 format 

Model 

ONNX format 

!python -m tf2onnx.convert.py --input %name% --inputs %input_name% --outputs %output_name% 
 
calib = Calibrator('int16', 'per-tensor', 'minmax') 

Model 
optimize 

Model 
quantize 

C format 

(.cpp, .hpp) 
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Bare Metal AI (based on ESP) 

3. ESP project 

• Components 

• Model (.cpp, .hpp) 

• Sdk config 

• Librariers 
 
 
 
 
 
 
https://github.com/espressif/esp-who 
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Related topics 

• TinyML is bringing deep learning models to microcontrollers 
https://thenextweb.com/news/tinyml-deep-learning-microcontrollers-syndication 

• ESP32-CAM: TinyML Image Classification 
https://mjrobot.org/2022/02/10/esp32-cam-tinyml-image-classification-fruits-vs-
veggies/ 


