
Classroom materials

AI for EDGE

TinyML for edge computing

Classroom materials Classroom materials

o TinyML

• Motivation

• Techniques

• Benefits

o MicroPython

o Baremetal AI

o ESP project

Outline

Classroom materials

How many transistors does it cost to implement a single multiplication in a
network?

1. As a dedicated digital circuit:

• m.in. 38 transistors/bit

2. As a reconfigurable digital circuit:

• 32k transistors/weight

 (in 40 LUTs)

TinyML - motivation

Classroom materials Classroom materials

o The average consumer CPU will draw between 65 to 85 watts of power,
while the average GPU consumes anywhere between 200 to 500 watts.

o A typical microcontroller draws power in the order of milliwatts or microwatts,
which is a thousand times less power consumption. This energy efficiency
enables the TinyML devices to run on battery power while running ML
applications on the edge.

o TinyML with its support for frameworks that include TensorFlow Lite, uTensor,
and Arm’s CMSIS-NN, brings together AI and small connected devices.

TinyML - motivation

Classroom materials

Definition: This is a concept of implementing mainly deep neural networks
directly on embedded devices with highly limited resources.

This approach may include:

o adapting (reducing) the network architecture to reduced hardware resources

o reduction of power consumption during processing (e.g. for use in battery
powered applications)

TinyML can be understood as a network algorithm compression method.

TinyML

Classroom materials

Quantization:
o The default representation of weights in the model is 32-bit floating point

numbers

o Quantization reduces the accuracy to 8-bit integers

• The model running on the processor after quantization runs faster

• The technique is dedicated to devices with small memory

• It brings special effects for complex models, i.e. those that have a lot of
weights.

TinyML - techniques

Classroom materials

Pruning:
o It involves cutting parameters for reduction model size

o Results in deterioration of model parameters

o It usually requires iterative modification of the model

o It is difficult to define a universal, i.e. model-independent pruning method

TinyML - techniques

Classroom materials

o TensorFlow Lite Converter – to convert a model imported from the
TensorFlow format

o TensorFlow Lite Interpreter – to load the finished model to the
microcontroller's memory

TinyML - tools

TensorFlow API
TensorFlow Lite

Converter
TensorFlow Lite

Interpreter

GPU

CPU

Classroom materials

Input models:

o Saved model - classic TF model on disk
• Keras H5 format – hierarchical data format HDF5

o Keras model – based on API Keras high-level interface

o models built of functions - based on API Keras low-level interface

The resulting TensorFlow Lite model:

.tflite – FlatBuffer format

Conversion options:

o Compliance options – permission to use operators

o Optimization options – defining the optimization used for the conversion

o Metadata options – adding metadata to the model

TensorFlow Lite – conversion process

Classroom materials Classroom materials

o Energy efficiency: Microcontrollers consume very little power, which
delivers benefits in remote installations and mobile devices.

o Low latency: By processing data locally at the edge, data doesn't need to be
transmitted to the cloud for inference. This greatly reduces device latency.

o Privacy: Data can be stored locally, not on cloud servers.

o Reduced bandwidth: With decreased dependency on the cloud for
inference, bandwidth concerns are minimized.

o The future of TinyML using MCUs is promising for small edge devices and
modest applications where an FPGA, GPU or CPU are not viable options.

Benefits of TinyML

Classroom materials Classroom materials

Bare Metal

Definition: An approach based on programming the application directly "on the
hardware" (with direct access to the microcontroller registers), i.e. without using
a programming interface, e.g. an operating system.

loop

interruption

event

One of the more commonly used bare-metal

implementations is the infinite-time super-loop that the

microcontroller executes. The execution of the loop is

stopped by an interruption event.

Classroom materials Classroom materials

Bare Metal vs. RTOS

RTOS:

System kernel with scheduler

Device drivers

Multithreading

Prioritizing tasks

Most likely a quick starting point

Hardware

RTOS

Application

Classroom materials Classroom materials

Bare Metal vs. RTOS

BARE METAL:

Customized solution

Solution planned in detal

Lower costs of software execution

Most likely a longer starting point

Harder to develop project in the future

Hardware

Application

Classroom materials Classroom materials

MicroPython

o A lightweight version of the Python 3 programming language

o A subset of the Python standard library

o Optimized to work with microcontrollers

o Requirements: 256 KB for code and 16 KB of RAM

o The functionality includes:

• Integers of arbitrary precision

• Interactive prompt

• Exception handling

• Comprehension letter

 https://micropython.org/

 Porty: cc3200, esp32, esp8266, mimxrt, nrf,
 renesas-ra, rp2, samd, stm32

Classroom materials Classroom materials

ESP32-CAM specification

o Clock frequency: up to 160 MHz

o 520KB RAM

o 512 kB FLASH

o WiFi 802.11 b/g/n module

o Security: TKIP, WEP, CRC, CCMP, WPA/WPA2, WPS

o UART/SPI/I2C/PWM/ADC/DAC interfaces

o OV2640 camera (2 MPx resolution)

o Possibility to connect the OV2640 or OV7670 camera

o microSD slot (up to 4GB)

o User LED

o RESET button

Classroom materials

1. Prepare the model

Bare Metal AI

Dataset
Model

definition
(CNN)

Training Saving

.h5 format

Bare Metal & RTOS Bare Metal

Classroom materials

2. ESP conversion

Bare Metal AI (based on ESP)

Model

.h5 format

Model

ONNX format

!python -m tf2onnx.convert.py --input %name% --inputs %input_name% --outputs %output_name%

calib = Calibrator('int16', 'per-tensor', 'minmax')

Model
optimize

Model
quantize

C format

(.cpp, .hpp)

Classroom materials Classroom materials

Bare Metal AI (based on ESP)

3. ESP project

• Components

• Model (.cpp, .hpp)

• Sdk config

• Librariers

https://github.com/espressif/esp-who

https://github.com/espressif/esp-who
https://github.com/espressif/esp-who
https://github.com/espressif/esp-who
https://github.com/espressif/esp-who
https://github.com/espressif/esp-who
https://github.com/espressif/esp-who
https://github.com/espressif/esp-who
https://github.com/espressif/esp-who
https://github.com/espressif/esp-who
https://github.com/espressif/esp-who

Classroom materials Classroom materials

Related topics

• TinyML is bringing deep learning models to microcontrollers
https://thenextweb.com/news/tinyml-deep-learning-microcontrollers-syndication

• ESP32-CAM: TinyML Image Classification
https://mjrobot.org/2022/02/10/esp32-cam-tinyml-image-classification-fruits-vs-
veggies/

