
Classroom materials

AI for EDGE

Machine learning frameworks

Classroom materials Classroom materials

Machine learning Frameworks

• TensorFlow

• Keras

• scikit-learn

• PyTorch

• OpenVINO

Outline

Classroom materials Classroom materials

o Free and open-source software library for machine learning and AI

o Was developed by the Google Brain team and released under
the Apache License 2.0 in 2015

o Updated version, named TensorFlow 2.0, released in 2019

o Can be used in a wide variety of programming languages
(including Python, JavaScript, C++, and Java)

TensorFlow

Classroom materials Classroom materials

o A framework dedicated to machine learning,
focusing mainly on deep neural networks

o The essence of Tensorflow are data structures, called tensors

o Each tensor has the following fields:

• Rank

• Shape

• Size

• Dtype

• Data

TensorFlow

Classroom materials Classroom materials

o A specific feature of tensors is that they cannot be edited. If we want to
change the values of a tensor, we have to create a new one.

o The TensorFlow API gives us a wide range of operations on tensors

o These operations are defined so that they can be easily parallelized (from
the perspective of the user code, they are performed on the entire array at
once or on its part)

o Tensorflow does not automatically convert data for arithmetic operations

TensorFlow

Classroom materials Classroom materials

o Framework architecture

TensorFlow

Classroom materials Classroom materials

o Eager execution

• The default execution mode in TensorFlow 2.x

• It allows for flexible code writing, thanks to which we can mix TensorFlow operations
with pure Python code and other libraries (e.g. Numpy)

• The code is executed synchronously, similar to pure Python code

• Allows for easy debugging

TensorFlow

Classroom materials Classroom materials

o Graph execution

• This is the mode in which a set of tensor operations forms a computational
graph. Such a computational graph is automatically optimized and the memory
for its operations is preallocated. This results in a significant acceleration of
calculations. This mode can be used in conjunction with eager mode, since a
single function is designated as a graph.

TensorFlow

Classroom materials Classroom materials

Running a computational graph has two phases

• Tracing - involves running and tracing all tensor operations in the graph definition
and creating a tf.Graph object from them. The tf.Graph object has preallocated
memory for tensor operations in the graph and is optimized by the AutoGraph
module built into TensorFlow. Due to memory preallocations in the graph, the tensor
shapes must be known in advance. The more constraints we introduce on the
shape of the tensors, the better optimization we get. Tensor sizes that are not
known can be marked as dynamic by the "None" argument.

• Execution - execution of a computational graph on given inputs, which returns the
result

• The idea of the graph mode is to perform tracing only once, at the first start of the
graph, and then only perform the second phase. The first run of the graph is usually
much longer than each subsequent run. They are colloquially referred to as graph
warm up.

TensorFlow – Graph mode

Classroom materials Classroom materials

TensorFlow – Graph mode

Classroom materials Classroom materials

• Limitations

• Need to use operations defined by TensorFlow. Built-in Python functions like
list.append() or object-oriented polymorphism will not work

• It does not support recursion

• Operations are performed asynchronously, which makes debugging difficult.
This will also cause Python prints to not work (this can be circumvented by the
tf.print() method)

• In graph mode, graph outputs must be returned with "return...". It is not possible
to modify an external Python variable from within a graph. Referring to such a
variable will create a tensor based on it (if conversion is possible)

TensorFlow – Graph mode

Classroom materials Classroom materials

Usage

• To define a computational graph, we
need to mark a function with the
@tf.function decorator.

• We can also save the graph definition
to a file. The main format for saving
computational graphs in TensorFlow is
the saved model.

TensorFlow – Graph mode

class Module:

 @tf.function

 def graph_function(x: tf.Tensor):

 y = x*x + 5

 return tf.math.reduce_mean(y)

mod = Module()

Running eagerly

x = tf.constant([1, 2, 3])

x += 5

Running in graph mode

result = mod.graph_function(x)

Saving

tf.saved_model.save(mode, 'graph')

Classroom materials Classroom materials

• High-level API for designing neural networks

• The API is declarative, i.e. it allows you to declare the structure of the target
computational graph (neural network)

• Components in a graph are objects that inherit from the "tf.keras.layers.Layer"
class

• Components, training algorithms and metrics are available out of the box along
with other useful things

• Graphs created by Keras API can run in
eager or graph mode.

• Graph mode is enabled by default.

Tensorflow Keras

Classroom materials Classroom materials

o The Sequential API in Keras has
limited capabilities and is used to
define stacked graph structures in
which all operations are performed
consecutively on one line.

Tensorflow Keras - Sequential API

Classroom materials Classroom materials

o Functional API in Keras has very
wide possibilities in terms of
declaring graph structures.

o We can use it to do the same as
in the Sequential API, but in
addition, the connections in the
graph can be non-linear, and the
graphs themselves can have
many inputs and many outputs.

Tensorflow Keras - Functional API

Classroom materials Classroom materials

• The tf.keras.Model object accepts tf.keras.Input objects and output tensors as input.

• tf.keras.Model automatically registers all operations which, based on inputs, will create
appropriate outputs.

• tf.keras.Input is a so called symbolic
tensor that has some information,
such as a shape, but no value.
It is used to declare constraints
on input tensors.

• Symbolic tensors can have
dynamic shapes, which we
declare as None.

• As with @tf.function, tracing occurs
the first time the graph (tf.keras.Model object)
is queried. In the case of Keras,
this step is referred to as a build step.

Tensorflow Keras - Functional API

Classroom materials Classroom materials

o A set of tools that allows you to deploy
computational graphs to mobile, embedded
and IoT devices

o Supports TF Lite special graph format

o Calculation graphs are converted to this format
before deployment

o The number of operations that can be used in
this type of graph is limited

o The minimum memory requirements for TF
Lite are only a few hundred kB.

o Support for: Android, IOS, Embedded Linux
and 32-bit microcontrollers

Tensorflow Lite

Classroom materials Classroom materials

o Javascript library enabling the prototyping and
training of neural networks in a browser

o Uses the same graphical hardware as the browser
(GPU or integrated graphics)

Tensorflow.js

Classroom materials Classroom materials

o Browser tools for visualizing ML experiments

o Visualizations include e.g. training metrics, histograms of weights and biases in networks,
computational graph diagrams and training examples

o Also allows profiling programs using Tensorflow

TensorflowBoard

Classroom materials Classroom materials

Related topics

https://www.tensorflow.org/guide

https://scikit-learn.org/stable/user_guide.html

Post-Training Quantization Best Practices
https://docs.openvino.ai/latest/pot_docs_BestPractices.html#doxid-pot-docs-
best-practices

Movidius Myriad X VPU
https://www.aaeon.ai/eu/product/detail/ai-core-x

