Al for EDGE

Machine learning frameworks

Mach

Classroom materials

ine learning Frameworks

TensorFlow
Keras
scikit-learn
PyTorch
OpenVINO

scikit-learn.org

o Machine learning in Python

o Simple and efficient tools for predictive data analysis

o Accessible to everybody, and reusable in various contexts
o Built on NumPy, SciPy, and matplotlib

o Open source, commercially usable - BSD license

.ﬁewm

Classroom materials

scikit-learn.org

Classroom materials

APl Reference

This is the class and function reference of scikit-learn. Please refer to the full user guide for further details, as the class and function
raw specifications may not be enough to give full guidelines on their uses. For reference on concepts repeated across the API, see
Glossary of Common Terms and API Elements.

sklearn.base: Base classes and utility functions

Base classes for all estimators.

Base classes

base.BaseEstimator
base.BiclusterMixin
base.ClassifierMixin
base.ClusterMixin

base.DensityMixin
base.RegressorMixin
base.TransformerMixin
base.OneToOneFeatureMixin
base.ClassNamePrefixFeaturesQutMixin

feature_selection.SelectorMixin
]

Functions

base.clone(estimator, *[, safe])
base.is_classifier(estimator)
base.is_regressor(estimator)
config_context(*[, assume_finite, ...])

get_config()

Base class for all estimators in scikit-learn.

Mixin class for all bicluster estimators in scikit-learn.
Mixin class for all classifiers in scikit-learn.

Mixin class for all cluster estimators in scikit-learn.

Mixin class for all density estimators in scikit-learn.

Mixin class for all regression estimators in scikit-learn.
Mixin class for all transformers in scikit-learn.

Provides get_feature_names_out for simple transformers.

Mixin class for transformers that generate their own names by prefixing.

Transformer mixin that performs feature selection given a support mask

Construct a new unfitted estimator with the same parameters.
Return True if the given estimator is (probably) a classifier.
Return True if the given estimator is (probably) a regressor.
Context manager for global scikit-learn configuration.
Retrieve current values for configuration set by set_config.

set_config([assume_finite, working_memory, ..]) Set global scikit-learn configuration

show_versions()
4

Print useful debugging information”

scikit-learn.org

Components of scikit-learn

« Supervised learning algorithms
(the spread of machine learning algorithms: Generalized linear models, Support
Vector Machines, Decision Trees, Bayesian methods, Feature selection...)

- Cross-validation
(various methods to check the accuracy of supervised models)

« Unsupervised learning algorithms
(starting from clustering, factor analysis, principal component analysis to
unsupervised neural networks)

- Various datasets
(IRIS dataset, Boston House prices dataset)

- Feature extraction
(extracting features from images and text, e.g. Bag of words)

Classroom materials

scikit-learn.org

Andreas Mueller
scikit-learn
algorithm cheat-sheet

WORKING

SVR(kernel="rhf")
EnsembleRegressors

few features
should be X
important 4

' labeled
~ data
" numberof
YES. 8 categories)
: 3 known ¥

i = YE! ‘
f predictinga
quantity

NO

o nor

Embedding
I} WORKING - T
i NoT
i WORKING
e YES
o <10K
_ samples p kernel
N approximation

dimensionality
reduction

Classroom materials

o Machine learning framework based on the Torch library
o Originally developed by Meta Al, now part of the Linux Foundation

o lItis free and open-source software released under the modified BSD license
https://pytorch.org/

o Defines a class called Tensor (torch.Tensor) to store and operate on homogeneous

multidimensional rectangular arrays of numbers

50 6.0
1.0 1.0 20 1.0 20
3 2.0 3.0 4.0 v',"‘3.0 4.0
3.0 2
‘ C = torch.tensor([‘ D = torch.tensor([
= B = [1.0, 2.0] FEL, 250, [3., 411
‘ A = torch.tensor(3) ‘ ' torch. tensor([1.0,2.6,3.0]) [3.9': 4.9”1) ‘ [[5.'; s.],l [7.‘, 8.]]]1)
e 1 Dimension 2 Dimensions 3 Dimensions

O PyTorch

Classroom materials

The basic pipeline of a PyTorch project Training data

. . (torch.utils.data)
- Data Loading and Handling
(torch.utils.data)

« Building Neural Network (torch.:
. Create Network
torch.optim, torch. autograd) (torch.nn)

- Model Inference and Compatibilit
(torch.onnx, torch.hub)

Train Network

(toxrct im)

(torch.

Testing data |—RICIHERlIN—>

s ™.

Get Predictions

Perability Publish Models

nnx) (torch.hub)

Classroom materials

OpenVINO

o Open Visual Inferencing and Neural Network Optimization

o Open-source toolkit for optimizing and deploying Al inference
o Created and developed by Intel

o Can be used on Intel CPU, GPU, VPU or FPGA

®penVIN®

Classroom materials

OpenVINO

o Model preparation

- Prepare a custom model

- Adjust a ready-made solution

« Run a pre-trained network from Model Zoo
o Supported frameworks

- ONNX

- PaddlePaddle

- TensorFlow*

- PyTorch*
- MXNet*

- Caffe*

- Kladi*

* formats supported indirectly, need to be converted to OpenVINO IR before inference

Classroom materials

OpenVINO

Workflow for deploying a trained deep learning model
o Configure Model Optimizer for the specific framework (used to train your model)

o Run Model Optimizer to produce an Intermediate Representation (IR) of the model
based on the trained network topology, weights and biases values, and other optional
parameters

o Test the model in the IR format using the Inference Engine in the target environment

o Integrate Inference Engine in your application to deploy the model in the target
environment

Get Your Run Model OpenVINO™
Model Optimizer Runtime

.xml - describes the network topology
o .bin - contains the weights and biases binary data

O

User

Application

Classroom materials

OpenVINO

Model Optimizer

o Cross-platform command line tool

o Facilitates the transition between the training and deployment environment
o Converts the model to the OpenVINO Intermediate Representation format (IR)

o Operations:
« Reshaping — reshape input
- Modifying the Network Structure — for example remove Dropout layers
- Standardizing and Scaling — perform operations like normalization
- Quantization — change datatypes used by model

Classroom materials

OpenVINO

Intermediate Representation (IR)

o Intermediate representation describing a deep learning model plays an important role
connecting the OpenVINO toolkit components

o The IR is a pair of files:
« The topology file - an XML file that describes the network topology
- The trained data file - a .bin file that contains the weights and biases binary data

o Intermediate Representation (IR) files can be read, loaded and inferred with the
Inference Engine. Inference Engine offers a unified API across a number of

supported Intel platforms.

o IR can be additionally optimized for inference by Post-training optimization (POT)
that applies post-training quantization methods

Classroom materials

OpenVINO

o Quantizing Models with POT
« supports the uniform integer quantization method

- allows moving from floating-point precision to integer precision during the inference
time

- calibrates the network based on the resulting weights and activation values

o After post-training quantization model run faster and take less memory,
(it may cause a reduction in accuracy)

o Try using QAT (Quantization-aware Training) to increase accuracy

— OpenVINO .. Optimized
“ Model Optimizer IR model Model Optimizer IR model

Classroom materials

OpenVINO

o Supported hardware (Intel)
« CPU (Xeon with AVX2, Atom with SSE)
- GPU (HD Graphics, Iris Graphics)
- VPU (Movidius Myriad)
- GNA (Gaussian neural accelerator)

o Supported model format

Plugin FP32 FP16 18

CPU plugin Supported and preferred Supported Supported

GPU plugin Supported Supported and preferred Supported

VPU plugins Not supported Supported Not supported

GNA plugin Supported Supported Not supported
Arm®& CPU plugin Supported and preferred Supported Supported (partially)

Classroom materials

WWW.Mouser.mx

Object Size Detection with the OpenVINO™
Toolkit

En agosto 26, 2019 en All, Open Source por M. Tim Jones

Traditional methods of defect detection faced a number
of challenges that reduced the quality of the process.
Applying deep learning algorithms to captured video
information increases the speed and accuracy of
identifying objects that do not meet a predefined
standard. Though deep learning is a relatively new
solution for defect detection, it can expand the scope of
the solution from simple detection of a defect to classification of the type of defect. Training
deep learning networks to identify types of defects makes it possible to automatically route
objects based upon their severity—such as the size of the flaw. In this example of the Intel®
OpenVINO™ toolkit, we will look at a simple example of how video images can be used to
determine whether an object is defective based upon its surface area.

Object Size Detection Pipeline

In prior blog posts, we've seen examples of face and vehicle detection using images captured
by a video camera. In this application, we'll look at a different type of detection using deep
learning to identify an object on a conveyor belt, measure its surface area, and check for
defects.

Figure 1 shows the Object Size Detection pipeline. Let's explore this pipeline and the
activities that occur.

v

Deep Neural

Video Network Object Area
Camera (Object Validation
Detection)

Assembly Line
Data Analytics
System

OpenVino ™ Toolkit

Ubuntu Linux OS

6" Generation Intel® Core Processor

Figure 1- The Object Size Detection Pipeline diagram illustrates how this application of the
OpenVINO™ toolkit processes an image to determine whether an object has a defect based on its
surface area. (Source. Author)

OpenVINO - examples

This image processing application uses images captured by a video camera mounted above
a conveyor belt. A Convolutional Neural Network (CNN)—a type of image processing deep
neural network—processes the captured images to determine if an object is present. First,
the CNN identifies whether an object is in the capture frame. If an object is present, the CNN
draws a bounding box and calculates the area that object occupies. Then, this area is
checked against the predefined acceptable constraint. If the object is larger or smaller than
expected, then a defect indication is communicated.

Figure 2 shows the output of the Object Size Detection application of the OpenVINO™ toolkit.
Note that in this example, the CNN found the object and bounded it in order to calculate its

area.

Figure 2: The Object Size Detector output screen shows an example of the calculated area of a
detected object. (Source: Intel)

The sample application also illustrates the use of the Message Queue Telemetry Transport
(MQTT) protocol, which communicates the zone information to an industrial data analytics
system.

Related topics

https://www.tensorflow.org/guide
https://scikit-learn.org/stable/user_guide.html

Post-Training Quantization Best Practices
https://docs.openvino.ai/latest/pot_docs BestPractices.html#doxid-pot-docs-best-
practices

Movidius Myriad X VPU
https://www.aaeon.ai/eu/product/detail/ai-core-x

Introduction to Torch’s tensor
https://pytorch.org/tutorials/beginner/nlp/pytorch_tutorial.html

Classroom materials

