
Introduction to the systemcloud - Damian Huderek

1

Introduction to Cloud
Computing – Exercise 10
Scope: Helm charts

Introduction:

The aim of the lab is to get acquainted with the Helm package manager for Kubernetes. Before

performing the laboratory, restart the minicube.

1. Create a new chart

The best way to get started with a new chart is to use the helm create command to create a

skeleton of an example that we can rely on. Use this command to create a new chart named

mychart in the new directory:

Helm create mychart

Helm will create a new directory in your project called mychart with the structure shown below.

Let's review the structure of the created greyhound to find out how it works.

mychart

|-- Chart.yaml

|-- charts

|-- templates

| |-- NOTEBOOK.txt

| |-- _helpers.tpl

| |-- deployment.yaml

| |-- hpa.yaml

| |-- ingress.yaml

| |-- serviceaccount.yaml

| '-- service.yaml

'-- values.yaml

Templates

Introduction to the systemcloud - Damian Huderek

2

The most important piece of the puzzle is the templates/ directory. This is where Helm finds

definitions of YAML for our services, deployments and other Kubernetes objects. If you already

have definitions of your application, all you need to do is replace the generated YAML files with

your own. What you get is a working greyhound that can be deployed with the helm install

command.

Note, however, that the directory is called templates, and Helm runs every file in that directory

through the Go interpretation engine. Helm extends the scripting language by adding a number

of utility features to greyhound writing. Open the service.yaml file to see what it looks like:

apiVersion: v1

kind: Service

metadata:

name: {{ include "mychart. fullname" . }}

Tags:

 {{- include "mychart.labels" . | nindent 4 }}

Spec:

type: {{ . Values.service.type }}

AfterRTS:

- port: {{ . Values.service.port }}

 targetPort: http

 protocol: TCP

 name: http

Selector:

 app: {{- include "mychart.selectorLabels" . | nindent 4 } }

This is the basic definition of a greyhound service. During deployment, Helm will generate a

definition that looks more like a valid service. We can perform a trial installation and enable

debugging to checkthe generated definitions:

helm install --dry-run –debug mychart ./mychart

...

Source: mychart/templates/service.yaml

apiVersion: v1

kind: Service

metadata:

 Name: Mychart

 Tags:

 helm.sh/chart: Mychart-0.1.0

Introduction to the systemcloud - Damian Huderek

3

 app.kubernetes.io/name: mychart

 app.kubernetes.io/instance: mychart

 app.kubernetes.io/version: "1.16.0"

 app.kubernetes.io/managed-by: Helm

Spec:

 type: ClusterIP

 Ports:

 - port: 80

 targetPort: http

 protocol: TCP

 name: http

 Selector:

 app.kubernetes.io/name: mychart

 app.kubernetes.io/instance: mychart

...

Values

The template in service.yaml uses Helm-specific objects: Chart and . Values. The former

provides metadata about the greyhound to definitions such as name or version. The latter

object . Values is a key element of Helm charts, used to reveal the configuration that can be set

during deployment. The default values for this object are defined in the values.yaml file. Try

changing the default value of service. Port and perform another test installation. You should

notice that the port in the service and containerPort in the deploymentwill change. The

service.port value is used here to ensure that service objects and deployment work together

correctly. Using templates can significantly reduce schemas and simplify definitions.

If you want to change the default configuration, you can make overrides directly on the

command line:

helm install --dry-run --debug mychart ./mychart --set service.port=8080

For a more advanced configuration, we can create a YAML file containing overrides using the --

values option.

Helpers and other features

The service.yaml template also uses the parts defined in _helpers.tpl, as well as functions such

as replace. The Helm documentation provides a deeper guide to helpers, explaining how

functions, parts, and flow control can be used when creating a chart.

Introduction to the systemcloud - Damian Huderek

4

 Documentation

Another useful file in the templates/ directory is the NOTES.txt file. This is a template text file

that is added after a successful greyhound deployment. As we will see, when we implement our

first greyhound, it is a useful place to briefly describe the next steps regarding the useof e

created greyhound. Because the NOTES file.txt is triggered by a scripting language interpreter,

you can use the syntax to write out draft commands to obtain an IP address or password from a

Secret object.

Metadata

As mentioned earlier, the Helm chart consists of metadata that helps describe the application,

define restrictions on the minimum version required for Kubernetes and/or Helm, and manage

the chart version. All of this metadata is in the Chart.yaml file. The Helm documentation

describes the various fields of this file.

2. Implementation of your own greyhound

The greyhound generated in the previous step is configured to run the NGINX server provided

through Kubernetes. By default , a service of type ClusterIP will be created, so NGINX will only

be exposed internally in the cluster. To access it from the outside, we will use NodePort instead.

We can also set the name of the Helm installation so that we can easily refer to it. Let's go

ahead and deploy our NGINX Helm chart using the helm install command:

helm install example ./mychart

NAME: example

LAST DEPLOYED: Tue May 31 23:24:22 2022

NAMESPACE: default

STATUS: deployed

REVISION: 1

NOTEBOOK:

1. Get the application URL by running these commands:

 export NODE_PORT=$(kubectl get --namespace default -o

jsonpath="{.spec.ports[0].nodePort}" services example-mychart)

 export NODE_IP=$(kubectl get nodes --namespace default -o

jsonpath="{.items[0].status.addresses[0].address}")

 echo http://$NODE_IP:$NODE_PORT

Introduction to the systemcloud - Damian Huderek

5

The Helm install output displays a useful summary of the installation status and a rendered

NOTES.txt file to explain what's next. Run commands in the output to get the URL and to access

and run NGINX in a browser.

If all went well, you should see the NGINX welcome page as shown above.

3. Modification of the greyhound to implement your own service

The generated chart creates a Deployment object marked to run the greyhound provided by the

default values. This means that all we have to do to startanother ę service is to change the

image in the values.yaml file.

We're going to update the chart to launch the to-do list app available in the Docker Hub. In

values.yaml, update the image variables to refer to both "todo":

Image:

Repository: prydonius/todo

Tag: 1.0.0

pullPolicy: IfNotPresent

When working on editing a chart, it is a good idea to pass it through the lint tool to make sure

that you follow the requirements of the yaml files and that our file has no error. Run the helm

lint command to see the linter in action:

Helm Lint ./Mychart

==> Linting./mychart

Introduction to the systemcloud - Damian Huderek

6

[INFO] Chart.yaml: icon is recommended

1 chart(s) linted, no failures

Lint hasn't identified any majorproblems withthe variables, so we can move on. (NOTE, WE DO

NOT DO THIS) However, as an example, here's what the lint tool can display if it found errors:

echo "malformed" > mychart/values.yaml

Helm Lint ./Mychart

==> Linting./mychart

[INFO] Chart.yaml: icon is recommended

[ERROR] values.yaml: unable to parse YAML: error unmarshaling JSON: while decoding

JSON: json: cannot unmarshal string into Go value of type chartutil. Values

[ERROR] templates/: cannot load values.yaml: error unmarshaling JSON: while decoding

JSON: json: cannot unmarshal string into Go value of type map[string]interface {}

[ERROR]: unable to load chart

 cannot load values.yaml: error unmarshaling JSON: while decoding JSON: json:

cannot unmarshal string into Go value of type map[string]interface {}

Error: 1 chart(s) linted, 1 chart(s) failed

This time, lint informs us that it was unable to properly analyze the values.yaml file.

Now that the chart is configured correctly, restart the Helm installation to deploy the

applicationwith the "todo" image:

helm install example2 ./mychart --set service.type=NodePort

NAME: example2

LAST DEPLOYED: Tue May 31 23:32:53 2022

NAMESPACE: default

STATUS: deployed

REVISION: 1

NOTEBOOK:

1. Get the application URL by running these commands:

export NODE_PORT=$(kubectl get --namespace default -o jsonpath="{. spec.ports[0].

nodePort}" services example2-mychart)

export NODE_IP=$(kubectl get nodes --namespace default -o jsonpath="{.items[0].

status.addresses[0].address}")

 echo http://$NODE_IP:$NODE_PORT

Introduction to the systemcloud - Damian Huderek

7

Once again, we can run commands in NOTES to get the URL to access our application.

4. Create a package

So far, in this lab, we have used the helm install command to install a local, unpacked

greyhound. However, if you want to share your greyhounds(with the team or the community),

you can use the Helm package to create a tar package:

Helm package ./mychart

Helm will create a package mychart-0.1.0.tgz in our working directory, using the name and

version from the metadata defined in the Chart.yaml file. We can now install from this package

instead of from the local directory, passing the package as a parameter to the Helm installation.

helm install example3 mychart-0.1.0.tgz --set service.type=NodePort

 Dependencies

As the complexity ofthese applications in which we have many greyhounds increases, we may

find that we will have to download various dependencies, such as a database. Helm allows you

Introduction to the systemcloud - Damian Huderek

8

to specify the childcharts that will be created within the same version. Tode-finish a

dependency, add the following to the Charts.yaml file:

dependencies:

- Name: MySQL

 Version: 8.8.6

 Repository: "https://charts.bitnami.com/bitnami"

Like a runtime language dependency file (such as Requirements.txt in Python), the

Requirements.yaml file allows you to manage greyhound dependencies and their versions.

When you update a dependency, a file is generated so that later the dependency download uses

a known, working version. Run the following command to retrieve the MySQL dependency we

defined:

Helm Dependency Mychart Update

Getting updates for unmanaged Helm repositories...

... Successfully got an update from the "https://charts.bitnami.com/ bitnami" chart

repository

Saving 1 charts

Downloading mysql from repo https://charts.bitnami.com/bitnami

Deleting outdated charts

$ ls ./mychart/charts

mysql-8.8.6.tgz

Helm found a matching version in the bitnami repository and downloaded it to the subdirectory

of our greyhound. Now that we go and install the chart, we will see that MySQL objects are also

created:

helm install example5 ./mychart --set service.type=NodePort

NAME: example5

LAST DEPLOYED: Tue May 31 23:51:56 2022

NAMESPACE: default

STATUS: deployed

REVISION: 1

NOTEBOOK:

1. Get the application URL by running these commands:

 export NODE_PORT=$(kubectl get --namespace default -o

jsonpath="{.spec.ports[0].nodePort}" services example5-mychart)

Introduction to the systemcloud - Damian Huderek

9

 export NODE_IP=$(kubectl get nodes --namespace default -o

jsonpath="{.items[0].status.addresses[0].address}")

 echo http://$NODE_IP:$NODE_PORT

You can now view a list of all running helm greyhounds

Helmet ls

And see what pods are created in Kubernetes

Kubectl get pods

