
Wprowadzenie do systemów chmurowych - Damian Huderek

1

Introduction to Cloud
Computing – Exercise 1
Scope: The lab is devoted to preparing the runtime environment to
work with Docker. The first task is to install Docker. The next task is
to run the sample web application.

1. Preparing the environment and downloading the repository

Make sure you have Ubuntu 20.04 installed on your computer or virtual machine before

proceeding. All commands must be entered in the terminal.

For proper installation, make sure no other version of Docker is installed

$ sudo apt-get remove docker docker-engine docker.io containerd runc

Other versions should be uninstalled. In case there was no Docker installation, apt-get will

report that no action has been taken.

There are different methods to install Docker, but in this lab we will focus on repository-based

installation.

Update the apt indexes and install the necessary components to be able to download the

repository via HTTPS

$ sudo apt-get update

$ sudo apt-get install \ ca-certificates \ curl \ gnupg \ lsb-release

Then add the official GPG key

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o

/usr/share/keyrings/docker-archive-keyring.gpg

After executing the command, we can select the repository to download.

$ echo \ "deb [arch=$(dpkg --print-architecture) signed-

by=/usr/share/keyrings/docker-archive-keyring.gpg]

Wprowadzenie do systemów chmurowych - Damian Huderek

2

https://download.docker.com/linux/ubuntu \ $(lsb_release -cs) stable" | sudo tee

/etc/apt/sources.list.d/docker.list > /dev/null

2. Docker Engine installation

Re-update the apt indexes and install the latest version of Docker Engine and containerd

$ sudo apt-get update

$ sudo apt-get install docker-ce docker-ce-cli containerd.io

Verify the correctness of the installation by executing the docker run command by running the

hello-world test image

$ sudo docker run hello-world

3. Docker run

After proper installation, we can proceed to familiarize ourselves with running images on our

Docker. The first step will be to download and run the BusyBox container as an example.

To get started, we first download the image

$ docker pull busybox

If an error pops up when you try to download, it is related to the fact that we are trying to

execute the command without administrator rights. At this point, we have two options: we can

execute this command by adding the sudo prefix or call the sudo -s command and then all

commands will be invoked with administrator rights.

Correctly performed command downloads the Busybox image from the docker repository and

saves it in our system. Then we can view all downloaded images

$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

busybox latest c51f86c28340 4 weeks ago 1.109 MB

Once we have the image downloaded, we can start a new container

 $ docker run busybox

In the console we will notice that nothing else happened. This behavior is correct. By executing

the docker run busybox command, three actions took place: 1. The Docker client found an image

Wprowadzenie do systemów chmurowych - Damian Huderek

3

with the specified name, 2. A new container was created, 3. The command was executed on the

given container. When calling docker run busybox, we do not specify any command to run on

the container, so the container started and then closed. Execute docker run by specifying the

command

$ docker run busybox echo "hello from busybox"

What is the output? Why?

4. Docker ps

In the previous section, we launched a container containing the Busybox image. The docker ps

command is used to list all active containers. Use the command

$ docker ps

As there are currently no active containers, the list is empty. For more information, use the

command

$ docker ps –a

What is the result of the given command? Explain the relevant columns.

Let's try to run more than one command while running the container with the busybox image

$ docker run -it busybox sh

/ # ls

bin dev etc home proc root sys tmp usr var

/ # uptime

 05:45:21 up 5:58, 0 users, load average: 0.00, 0.01, 0.04

Starting a new container with the –it flag connects ours to the interactive tty interface and gives

us the ability to execute commands “inside” the container. Use a few commands to test running

them in a container. To exit the container, use the exit command.

The docker run command is the most common command when working with docker. In order to

continue working with docker, it's worth taking a moment to get to know it better. To see all

possible flags for the docker run command, run it with the –help parameter

docker run --help

Wprowadzenie do systemów chmurowych - Damian Huderek

4

5. Docker rm

After practice with running containers, the next step is to familiarize yourself with the container

removal mechanism. Although all containers have finished their work, you can display them

with the docker ps -a command. Non-working containers take up space on the disk, to remove

them, run the docker rm command and the container ID, e.g.

$ docker rm 305297d7a235 ff0a5c3750b9

305297d7a235

ff0a5c3750b9

You should see an ID return as confirmation of the container removal. Another method of

deletion is to indicate the deletion of all containers that have finished their work.

$ docker rm $(docker ps -a -q -f status=exited)

The -q flag returns the IDs of the containers and the -f flag filters the results so that the status

field has a specific value. The last thing worth mentioning is the -rm flag when invoking the

docker run command, which automatically deletes the container when it's finished..

6. WebAPP

After learning the basic commands, the next task is to run the web application on Docker. The

first step is to display a static website hosted on a Docker server. To do this, download and run

the sample website

$ docker run --rm prakhar1989/static-site

Since the image does not exist locally, the first thing to do is download the image and then run

the container. If everything goes well, you should see Nginx is running… Just starting it does not

configure the container: it has no address or port. To quit the container, press Ctrl+C. To be able

to run the container with parameters, execute the command

$ docker run -d -P --name static-site prakhar1989/static-site

In this case, we used the -d flag to unbind the terminal from our container, -P to assign random

ports to the container, and -name to give a specific name to our container. To see which ports

have been assigned to our container, execute the command

$ docker port static-site

Then we should get a list of ports assigned to our container.

Wprowadzenie do systemów chmurowych - Damian Huderek

5

Go to http://localhost:PORT_NUMBER (use mapping to 80/tcp).

The page should appear.

7. Docker images

We've run downloaded images in the previous sections, and in this section we'll explore finding

and creating your own images. To list all local images, execute the command

$ docker images

You should get a list of downloaded images in the console. Each of them has three fields:

Repository – this is the name and origin of the image. In case the image is official, it only has a

name (e.g. python, busybox) if the image is created by a user, it has its name first and then the

name of the image.

Tag – this is the description of the version of the image. It can simply be the latest (latest) or, as

in the case of specific software, have its own version (e.g. in the case of ubuntu, you can specify

the version: ubuntu:18.04)

Image ID – this is a unique tag of a given image.

If we wanted to search for an image. We can use the docker search command for this purpose.

The next task is to create our own image and load it into the container. The first command is to

download the prepared repository with the web application.

$ git clone https://github.com/prakhar1989/docker-curriculum.git

$ cd docker-curriculum/flask-app

The downloaded application randomly downloads and displays .gif files with cats. This is our

target application that we want to run. The next step is to build your own image. The

application is written in Python, so our base image will be Python3. To create our image, we will

prepare a Dockerfile. This is a collection of commands that are invoked during image creation.

This way we can automate the image creation process. It should be added here that the

commands used in Dockerfiles are practically identical to Linux commands - therefore there is

no need to learn another language.

Make sure you are in the docker-curriculum/flask-app folder. Create a new file in this folder

(you can use a text editor), it must be in the current folder and save the file as Dockerfile. Then

open the file and add the command

Wprowadzenie do systemów chmurowych - Damian Huderek

6

FROM python:3

This command specifies the base image. Then we copy the files and dependencies.

set a directory for the app

WORKDIR /usr/src/app

copy all the files to the container

COPY . .

Now we can install what we copied

install dependencies

RUN pip install --no-cache-dir -r requirements.txt

Next, we will specify the port on which our application inside the container should run

EXPOSE 5000

The last thing is to launch the application

CMD ["python", "./app.py"]

The main task of the CMD command is to tell the container what command it should execute at

startup. This is all that should be in the Dockerfile. At this point, we can build our image. To do

this, run the docker build command. You need a Docker hub account to build. If you don't have

one, you should create it first (you can use your university email). After creating your account,

execute the command replacing yourusername with your own username

$ docker build -t yourusername/catnip .

If everything went well, you should see a message that the image was built successfully. Then

you can run our built image.

$ docker run -p 8888:5000 yourusername/catnip

 * Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

After entering localhost:8888, we should see a website. Present the result to the teacher.

