
Introduction to the systemcloud - Damian Huderek

1

Introduction to Cloud
Computing – Exercise 4
Scope: Minikube, Kubectl

Introduction:

In this lab, we will explore minikube, a tool to run Kubernetes locally. Minikube runs a single

node inside a VM in our VM.

1. Kubectl and minukube installation:

The first step is to download the repository and install it

curl -LO https://dl.k8s.io/release/$(curl -L -s

https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl

Next install kubectl

sudo install -o root -g root -m 0755 kubectl /usr/local/bin/kubectl

To make sure we have the latest version, run the command

kubectl version –-client

Now that we have kubectl we will install minikube. Download the latest stable version

curl-LO https://storage.googleapis.com/minikube/releases/latest/minikube-linux-amd64

sudo install minikube-linux-amd64 /usr/local/bin/minikube

After the correct installation, we can proceed to launch our cluster.

minikube start

If minikube fails to start, driver settings are required

https://minikube.sigs.k8s.io/docs/drivers/docker/

At this point we have cluster installed, to have access to it we need CLI for kubernetes installed.

Introduction to the systemcloud - Damian Huderek

2

2. First application

When we have minikube running, we can see our available cluster

kubectl get after -A

What score did you get? What components are running?

Then create your first deployment and expose your application on port 8080

kubectl create deployment hello-minikube --image=k8s.gcr.io/echoserver:1.4

kubectl expose deployment hello-minikube --type=NodePort --port=8080

After a while, you should be able to see the running apps

kubectl get services hello-minikube

We can access the application in two ways. The first is to use a minikube

MiniKube Service Hello-MiniKube

The second way is port forwarding

kubectl port-forward service/hello-minikube 7080:8080

Then open your browser and go to http://localhost:7080/

You should be able to see request metadata from nginx, such as CLIENT VALUES, SERVER

VALUES, HEADERS RECEIVED in the application output. You can make a POST request and watch

the content appear in the BODY section.

Include screenshots in the report

3. LoadBalancer

In this case, we will implement deploy by selecting the type not NodePort but LoadBalancer.

kubectl create deployment balanced --image=k8s.gcr.io/echoserver:1.4

kubectl expose deployment balanced --type=LoadBalancer --port=8080

In another window, run the tunnel to create a pinned IP address for our implementation

Minikube tunnel

Introduction to the systemcloud - Damian Huderek

3

To find the address, call the command below and you will find the address in the EXTERNAL-IP

column

kubectl get balanced services

The deployment is available at <EXTERNAL-IP>:8080

Take a screenshot. Explain the difference between type=NodePort and type=LoadBalancer.

4. Deploy using YAML files

In this task, we will run an application consisting of a controller, service and frontend part –

Guestbook.

The first stage of launching the application is to launch Redis Master. A Kubernetes deployment

consists of two or more parts - replication controller and service.

The replication controller defines the number of instances to run, the Docker image to use, and

the name that identifies the service. Additional options can be used for configuration.

If something wrong with Redis replication, the replication controller would restart it on the

active node.

First of all, we need to run the redist controller. Create YAML file (nano command)

apiVersion: v1

kind: ReplicationController

metadata:

 Name: redis-master

 Tags:

 Name: redis-master

Spec:

 replicas: 1

 Selector:

 Name: redis-master

 Template:

 metadata:

 Tags:

 Name: redis-master

 Spec:

 containers:

Introduction to the systemcloud - Damian Huderek

4

 - name: master

 image: redis:3.0.7-alpine

 Ports:

 - containerPort: 6379

Save the file as redist-master-controller.yaml

It will then call the kubectl command

kubectl create -f redis-master-controller.yaml

At this point we have created the Replication Controller. You can see the available controllers

after calling the command

kubectl get rc

The second part is Service. Service is a named load balancer that forwards traffic to one or more

containers. The proxy works even when the containers are located on different nodes.

Service Proxy communicates in a cluster and rarely providesaccess to an external interface.

When you start a service, it looks like you can't connect using curl or netcat unless you run it as

part of Kubernetes. The recommended approach is to have a LoadBalancer service to handle

external communications. Create a new YAML file

apiVersion: v1

kind: Service

metadata:

 Name: redis-master

 Tags:

 Name: redis-master

Spec:

 Ports:

 # the port that this service should serve on

 - Port: 6379

 targetPort: 6379

 Selector:

 Name: redis-master

And save it as redis-master-service.yaml. To start the website using the YAML file, call

Kubectl create –f redis-master-service.yaml

Introduction to the systemcloud - Damian Huderek

5

To check the running services, execute

Kubectl get services

Follow the same steps for the configuration files below. Ultimately, we want to run the

following components:

- Redis master controller

- Redis master service

- Redis slave controller

- Redis slave service

- Frontend controller

- Frontend service

 Redis-slave-controller.yaml file:

apiVersion: v1

kind: ReplicationController

metadata:

 Name: redis-slave

 Tags:

 Name: redis-slave

Spec:

 replicas: 2

 Selector:

 Name: redis-slave

 Template:

 metadata:

 Tags:

 Name: redis-slave

 Spec:

 containers:

 - name: worker

 image: gcr.io/google_samples/gb-redisslave:v1

 Env:

 - name: GET_HOSTS_FROM

 value: DNS

Introduction to the systemcloud - Damian Huderek

6

 # If your cluster config does not include a dns service, then to

 # instead access an environment variable to find the master

 # service's host, comment out the 'value: dns' line above, and

 # uncomment the line below.

 # value: env

 Ports:

 - containerPort: 6379

Redis-slave-service.yaml file:

apiVersion: v1

kind: Service

metadata:

 Name: redis-slave

 Tags:

 Name: redis-slave

Spec:

 Ports:

 # the port that this service should serve on

 - Port: 6379

 Selector:

 Name: redis-slave

 Frontend-controller.yaml file:

apiVersion: v1

kind: ReplicationController

metadata:

 Name: frontend

 Tags:

 Name: frontend

Spec:

 Replicas: 3

 Selector:

 Name: frontend

 Template:

 metadata:

Introduction to the systemcloud - Damian Huderek

7

 Tags:

 Name: frontend

 Spec:

 containers:

 - name: php-redis

 image: gcr.io/google_samples/gb-frontend:v3

 Env:

 - name: GET_HOSTS_FROM

 value: DNS

 # If your cluster config does not include a dns service, then to

 # instead access environment variables to find service host

 # info, comment out the 'value: dns' line above, and uncomment the

 # line below.

 # value: env

 Ports:

 - containerPort: 80

 frontend-service.yaml file:

apiVersion: v1

kind: Service

metadata:

 Name: frontend

 Tags:

 Name: frontend

Spec:

 # if your cluster supports it, uncomment the following to automatically create

 # an external load-balanced IP for the frontend service.

 # type: LoadBalancer

 type: NodePort

 Ports:

 # the port that this service should serve on

 - port: 80

 nodePort: 30080

 Selector:

 Name: frontend

Introduction to the systemcloud - Damian Huderek

8

Once all the components are up and running, you should be able to access your guestbook. To

do this, you need to know the port under which your service is running. Call

kubectl describe service frontend | grep NodePort

At what address and port dos isour service blunt?

Present a working book to the presenter and add a screenshot to the report.

Where is the amount of redist slave replication defined? Point to the file and specific line.

5. Exercise*

Find the Docker image in the docker repository that you think will be interesting, then run it on

the Kubernetes cluster.

Include in the report what image you downloaded, commands required to run and a screenshot

of the launch.

