
AI for Edge - Paweł Szalczyk , Roman Oberenkowski

Project
Presence control using face recognition

1. Requirements
Installation requirements:

Edge device and server:

Operating system: Linux (preferably Ubuntu , tested on versions 16.04 and 22.04)

Language/Compiler: Python 3.6

Hardware requirements (server):

 Multiprocessing support

 Network connection between server and edge devices

 Fixed IP

Hardware requirements (edge device):

 Multiprocessing support

 usb camera

 https://solectroshop.com/pl/moduly-rfid/1753-modul-rfid-pn532-nfc-uart-i2c-spi.html with

adapter for USB interface (GND, 5V, RX, TX outputs)

 Stable network connection between server and edge devices. Wired and wireless

connectivity supported

Required libraries to install:

 Packages listed in the installation list below (must be run before installing OpenCV and

FaceRecognition packages)

 Mosquito MQTT (sudo apt-get install mosquitto and sudo apt-get install mosquitto - clients)

 OpenCV (pip install opencv -python)

 Face-recognition(pip install face-recognition)

 Imutils (pip install imutils)

 Pickle(pip install pickle- mixin)

 Paho.mqtt.client (pip install paho-mqtt)

 Psutil (pip install psutil)

 https://github.com/carolinedunn/facial_recognition (git clone

https://github.com/carolinedunn/facial_recognition)

 CLIENT ONLY: libnfc -bin libnfc -dev libnfc -examples

Installation list required for OpenCV and face - recognition :

1. sudo apt install cmake build-essential pkg-config git

2. sudo apt install libjpeg -dev libtiff -dev libjasper -dev libpng -dev libwebp -dev libopenexr -

dev

3. sudo apt install libavcodec -dev libavformat -dev libswscale -dev libv4l-dev libxvidcore -dev

libx264-dev libdc1394-22-dev libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev

about:blank
about:blank

AI for Edge - Paweł Szalczyk , Roman Oberenkowski

4. sudo apt install libgtk-3-dev libqtgui4 libqtwebkit4 libqt4-test python3-pyqt5

5. sudo apt install libatlas -base-dev liblapacke -dev gfortran

6. sudo apt install libhdf5-dev libhdf5-103

7. sudo apt install python3-dev python3-pip python3-numpy

2. Configuration and commissioning

2.1 Server (database preparation)
The data structure on the server is stored as follows:

Dataset /{student index}/{student photos}

Dataset /{student index}/{student attendance file}

Dataset /{student index}/{student recognition file}

In order to prepare the database, place verified photos of students in the above-mentioned location

and then execute the command

" python train_model.py {student index} "

for each new student or to recalculate an existing student.

#! /usr/bin/python

import the necessary packages

from imutils import paths

import face_recognition

#import argparse

import pickle

import cv2

import os

import sys

our images are located in the dataset folder

print("[INFO] start processing faces...")

imagePaths = list(paths.list_images(f'dataset/{sys.argv[1]}'))

initialize the list of known encodings and known names

knownEncodings = []

knownNames = []

loop over the image paths

for (i, imagePath) in enumerate(imagePaths):

 # extract the person name from the image path

 print("[INFO] processing image {}/{}".format(i + 1,

 len(imagePaths)))

 name = imagePath.split(os.path.sep)[-2]

 # load the input image and convert it from RGB (OpenCV ordering)

 # to dlib ordering (RGB)

 image = cv2.imread(imagePath)

 rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

AI for Edge - Paweł Szalczyk , Roman Oberenkowski

 # detect the (x, y)-coordinates of the bounding boxes

 # corresponding to each face in the input image

 boxes = face_recognition.face_locations(rgb,

 model="hog")

 # compute the facial embedding for the face

 encodings = face_recognition.face_encodings(rgb, boxes)

 # loop over the encodings

 for encoding in encodings:

 # add each encoding + name to our set of known names and

 # encodings

 knownEncodings.append(encoding)

 knownNames.append(name)

dump the facial encodings + names to disk

print("[INFO] serializing encodings...")

data = {"encodings": knownEncodings, "names": knownNames}

f = open(f"dataset/{sys.argv[1]}/{sys.argv[1]}.pickle", "wb")

f.write(pickle.dumps(data))

f.close()

The data structure on the client is stored as follows:

Dataset /{student index}/{student recognition file}

Dataset /{student index}/{student attendance file}

2.2 Server (MQTT):
After installing the mosquito mqtt and the mqtt client (ubuntu : sudo apt install -y mosquitto AND

sudo apt install -y mosquitto-clients)

First, it is required to edit the configuration file: sudo nano / etc / mosquitto / mosquitto.conf

Where to add the code:

" listener 1883

allow_anonymous true "

Then start the mqtt broker (sudo / etc / init.d / mosquitto start)

Server (server.py file):

In order to start the server, it is required to define the "broker" variable and set the IP address of the

server on which the MQTT broker was started

To link the server with the edge device, you must give the edge device a unique ID (a string of letters

and numbers)

Permanent link:

Add the device ID to the "EDGEIDS" list

Temporary binding:

AI for Edge - Paweł Szalczyk , Roman Oberenkowski

After starting the server, enter the device ID on the input

The server is started by executing the command: " python server.py"

If a new edge device has been added to the network or student data has been manually updated, the

server must be restarted to upload face recognition data or provide "UPDATE" to the server input.

2.3 Customer
After installing the mosquito mqtt and the mqtt client (ubuntu : sudo apt install -y mosquitto AND

sudo apt install -y mosquitto-clients)

Configure the client file:

Set the "broker" variable to the IP of the MQTT broker

Define a list of teacher/teacher/admin cards by adding their unique IDs to the " admincardID " list

Have at least 1 (there may be an example attached to the client's package) . pickle in " dataset /{

uniqueID }/"

Before starting the client, you must give the device a unique ID (a string of letters and numbers)

After unpacking the package with the client source code, follow the instructions below:

1. Go to the root folder with the source codes

2. Execute the command " make installconfig "

3. Execute the command " ls / dev / ttyUSB *"

4. Connect the NFC card reader

5. Execute the command " ls / dev / ttyUSB *"

6. Identify which reader ID has appeared and record it

7. Complete the configuration file (/etc/nfc/devices.d/pn532_via_uart2usb.conf) Reader ID

8. Execute the command " gcc -o reader.o reader.c - lnfc "

After executing the above instruction, we run the client with the command "./ reader.o | python

client.py { uniqueID } ”

3. Customer service
After starting, the client is in "passive mode" where it only receives packets used to update the facial

recognition database.

In order to activate the presence system, the same administrator/leader card should be presented to

the reader twice

After starting the attendance system, to register attendance, look at the camera and apply the ID

card until a window with a photo with an index appears above the student's face. If the photo

appears, the presence has been registered correctly. (Note: Only one person should be in the frame!)

If the message "UNRECOGNIZED" is displayed above the student's face in the photo, you can re-

measure by selecting the "r" (reset) key and repeat the actions from the point above.

If the system is unable to recognize the person repeatedly, select the "s" key (save) to update the

student recognition data.

AI for Edge - Paweł Szalczyk , Roman Oberenkowski

After selecting the data update option, verification by the instructor is required. In order to do this,

the teacher's card should be approached (bounced), verify that the person on the ID card is the

person shown in the photo and select the "y" (yes) button if the data is correct or "n" if the data is

not correct. After selecting the " yes " option, the student does not have to re-register the ID card in

order to register attendance. Example data displayed on the console:

AI for Edge - Paweł Szalczyk , Roman Oberenkowski

AI for Edge - Paweł Szalczyk , Roman Oberenkowski

AI for Edge - Paweł Szalczyk , Roman Oberenkowski

AI for Edge - Paweł Szalczyk , Roman Oberenkowski

Example view from the camera:

5. Stopping the server and client
To stop the server or client, give KeyboardInterrupt (Crt+C) input to any application. Applications

will first close subprocesses and then exit.

6. Input data
Face recognition photos should have a .jpg extension. The size of the photos is irrelevant if the face is

recognizable "with the naked eye". Even for the size of 200x200px, the effectiveness of the model is

sufficient to recognize its owner with 90% efficiency.

7. Conclusions and additional information
1. The server was tested in continuous operation for ~24 hours, no situation that would

interfere with its operation was detected. The client was tested at work for ~6h, conclusions

as above .

2. To read a single student's presence, run the script

presence.py student_index

3. System resource usage on the client (UP2 Edge AI device) is as follows:

Enabled client without facial recognition enabled:

AI for Edge - Paweł Szalczyk , Roman Oberenkowski

Enabled client with facial recognition enabled:

4. Due to the current file transfer protocol, the transfer time for facial recognition pickles is ~1

second. If the system is run with a large number of students, it may take too long to send all

data to the client (30-60 minutes to send all data). The proposed solution would be to pack

all data and send a single package to customers.

5. Another limitation of the current system is the fact that there should be only one person in

the frame

6. A possible development of the system is the use of a touch panel for display instead of a

screen + keyboard, programming a graphical interface with buttons would be required.

7. Communication between processes takes place via a queue system (Queue)

8. Optimization of resource usage can be done by removing loops listening to mqtt channels

and replacing them with an appropriate algorithm of waiting for data

