
AI for EDGE – Paweł Pietrzak

Bean photo classification

Task 1

Design a classifier that performs multiclass classification of healthy i

sick beans:

https://www.tensorflow.org/datasets/catalog/beans

https://github.com/AI-Lab-Makerere/ibean/

The data is taken from the server in the form of a tensorflow dataset. API description:

https://www.tensorflow.org/guide/data

https://www.tensorflow.org/api_docs/python/tf/data/Dataset

Tip 1:

- ds.map(): data preprocessing and augmentation

- ds.shuffle(): shuffle data before each epoch or iteration

- ds.batch(): batch size setting

- ds.repeat(): repeating examples from a dataset after analyzing all of them

Elements

Tip 2:

Training examples should be mixed at least before each epoch.

GPU can be used to train the network if available. For this purpose go to Runtime -> Change

runtime type and select GPU as Hardware accelerator.

You can get started with the following code:

!pip install -U tensorflow_datasets

import tensorflow as tf

import tensorflow_datasets as tfds

Load train, validation and test datasets

train, train_info = tfds.load(name='beans', split='train', shuffle_file

s=True, with_info=True)

about:blank
about:blank
about:blank
about:blank

AI for EDGE – Paweł Pietrzak

valid, valid_info = tfds.load(name='beans',split='validation', shuffle_

files=False, with_info=True)

test, test_info = tfds.load(name='beans', split='test', shuffle_files=F

alse, with_info=True)

Show examples of images and corresponding classes

tfds.show_examples(test, test_info)

Print example image shape and label

example_dict = next(iter(train))

print('Image shape', example_dict['image'].shape)

print('Label', example_dict['label'])

Recommended treatments to test:

• reducing the size of images to speed up training

• augmentation of training images, e.g. by rotations, mirror images, slight noise, brightness

change, contrast change

• normalization to the range <-0.5, 0.5>, <-1, 1> or <0, 1>

• BatchNormalization after convolutional and dense layers with large learning rate (0.01-0.1)

• classifier architecture modeled on VGG or Resnet models

• (alternatively) transfer learning and fine tuning with the VGG model or Reset

