
AI for Edge - Kacper Szmitko , Marcin Tajsner 

Project 

Detection and calculation of distance to  

road signs 

 

Objective 

The aim of the project is to create an application that allows detecting road signs from 

images captured by the camera and calculating in real time the distance from the camera to 

the signs. 

 

Destiny 

The application is designed for the UP Squared AI Edge X minicomputer . A neural network 

based on the YOLO architecture is responsible for character detection . The application 

distinguishes several defined types of the most common characters. The application will be 

created using the Python 3 language . 

 

1. Preparing the project 

 

The preparation of the project began with the creation of a set of training data. At the 

beginning, a ready set was searched on the Internet , but no suitable set with Polish 

characters was found. In that case, the dataset was prepared independently. For this 

purpose, five approximately 30-minute videos recorded with a dash cam were downloaded 

from YouTube, and they also recorded their own using the camera included in the UP 

Squared AI Vision X Developer Kit. Then, with the help of the VLC program, about a thousand 

frames with visible road signs were extracted from the films. 

 

Input data description 

 

The next stage was the annotation of video frames, which consisted in marking the location 

of signs of a given type on them. Many free annotation programs were tested, finally the 

web application " roboflow " was chosen because of its accessible and simple user interface. 

All characters that are visible to a human were marked, which resulted in many relatively 

small characters in the data set. On average, three road signs were marked on one image 

frame. Data augmentation capabilities available in " roboflow " were also used to triple the 

size of the training set. 

 

Network training 



AI for Edge - Kacper Szmitko , Marcin Tajsner 

 

After the dataset was created, the neural network was trained. The YOLOv5 network in the 

nano version was selected for the task due to its speed and relatively good precision. A script 

attached to the network repository was used to train the network. The learning itself was 

carried out on a GPU provided by Kaggle and lasted about 10 hours. YOLOv5 networks in 

non- nano versions were also trained to later compare their performance and accuracy. 

 

Network conversion 

 

Next, the trained network had to be prepared in such a way that it could be used with the 

Intel Movidius accelerator Myriad X. Initially, the neural network with trained weights was 

written in the format used in the PyTorch library , but this library was unable to use the 

accelerator. The only tool that can handle the Intel Movidius accelerator Myriad X is 

OpenVINO . It was necessary to convert the network to a format that is supported by this 

tool. The development version of the OpenVINO tool provides a script that allows you to 

convert a network saved in the ONNX format to a format supported by OpenVINO . 

The conversion was in two stages: from PyTorch format to ONNX format using a script 

located in the YOLOv5 repository, then from ONNX to a format supported by OpenVINO . 

 

Problems with OpenVINO 

 

After converting the neural network with weights to the appropriate version, a problem with 

accelerator support was encountered. It turned out that the development version of 

OpenVINO , which can only be installed via the PyPI tool , does not support Intel Movidius 

accelerators Myriad X. There was no mention of this in the documentation. One way to use 

OpenVINO developer tools and Intel Movidius accelerators at the same time is to install two 

versions of OpenVINO . 

The first version with only the OpenVINO engine , without development tools, must be 

installed using the offline installer, because only it installs the appropriate drivers and 

libraries to support Intel Movidius accelerators Myriad . Then, in order to use the 

development tools, install a second copy of OpenVINO , this time using the PyPI tool . It's 

best to do this in a virtual environment so there are no issues with environment variables. 

When we already have two installations of the OpenVINO tool (one supports accelerators, 

but does not have development tools, the other has a development tool, but does not 

support accelerators) we can choose which instance is to be currently used. This can be done 

by modifying environment variables. 

 

Interface execution 

 

The next step in the project is to create an interface that will allow the use of a neural 

network in the traffic sign detection algorithm. Before submitting data to the network, the 

image frame must be subjected to appropriate processing. From the resulting vector, data 

on the position of the characters, their type and certainty of detection should be read. The 

Non-maximum Suppression technique was used . There are many examples of such 

interfaces on the Internet for the YOLOv5 network, but no example that could use Intel 



AI for Edge - Kacper Szmitko , Marcin Tajsner 

Movidius accelerators was found Myriad . Therefore, an appropriate interface was designed 

based on the one used in the detection script located in the YOLOv5 repository. After 

implementing the interface, a neural network was launched using the Intel Movidius 

accelerator Myriad X and tests were carried out to recognize and locate road signs on a 

single image frame. 

 

2. Character detection algorithm 

 

The traffic sign detection algorithm used in the work uses the YOLOv5 neural network. This 

network allows the detection of objects in the image in real time. It was learned on a set of 

700 frames, cut from recordings with car cameras, which show road signs along with 

annotations about their location and category. The algorithm divides the detected 

characters into the following categories: 

• Informative 

• Informative additional 

• Informative large 

• Warrant 

• Priority 

• Prohibition 

• Big ban 

• Stop 

• Warning 

• Additional warnings 

• Give way 

Distances are not calculated for additional information signs, large information signs, large 

prohibition signs and additional warning signs, which is caused by their irregular shapes. 

 

3. Character detection accuracy and performance 

 

The algorithm uses YOLOv5 nano version , it is the smallest and fastest available YOLOv5 

networks. Its accuracy when taught is 81% with 50% confidence and 60% with 95% 

confidence. Due to the fact that the characters on the frames may be small, the network was 

trained on frames with a relatively large size of 1280 px , thanks to which its precision is 

much higher than if it was trained on frames scaled to only 640 px (at 640 px precision for 

50% confidence is only 63%). 

Processing time per 1280 px frame on the UP Squared AI Edge X mini PC using the built-in 

Intel Movidius accelerator Myriad X is around 0.25 seconds. When using the CPU, the 

processing time increases to about 0.45 seconds. Scaling the frames to the size of 640 px 

shortens the frame processing time four times, but the precision is definitely lower. 

 

 

4. Calculation of the distance from the mark 

 

Each frame of the film is fed to the input of the neural network. The network returns the 

upper left and lower right points that are part of the rectangle inside which the character is 



AI for Edge - Kacper Szmitko , Marcin Tajsner 

located. It also returns the number of the class the character belongs to. Then the distance 

to a given mark is calculated from the following formula: 

 

 
 

Where: 

d – distance from the camera to the given mark (mm) 

f - camera focal length (mm) 

𝑠𝑟 - actual character size (mm) 

𝑅 - image resolution 

𝑠𝑖 - size of the character in the photo ( px ) 

𝑃 – sensor size (mm) 

 

The actual size of a character is always the shorter side of the character. The resolution and 

size of the sensor are adjusted to the current shorter side, i.e. if the shorter side is in the x-

axis, the width of the image is taken as the resolution and width of the sensor. 

After determining the distance to the mark, it is converted to meters and marked on the 

frame together with the rectangles inside which the mark is located and information about 

the type of the detected mark. An example frame is shown in Figure 1. 

 

 
Figure 1 

 

 

  



AI for Edge - Kacper Szmitko , Marcin Tajsner 

 

5. Installation and use of the application on the UP Squared AI Edge X 

 

Step 1 - Install Ubuntu 20.04 on the UP Squared AI Edge X mini PC 

1. Download Ubuntu 20.04 - https://releases.ubuntu.com/20.04/  

2. Install Ubuntu 20.04 on a mini PC by following the guide - 

https://ubuntu.com/tutorials/install-ubuntu-desktop , in the option to choose the 

type of installation, choose minimal installation 

 

Step 2 - Installing the traffic sign detection app 

1. After logging in, open the console (use the keyboard shortcut Ctrl + Alt + t) 

2. Invoke (type the command, click Enter and wait for it to execute) the following 

commands in turn: 

 
a. sudo apt update -y 

b. sudo apt upgrade -y 

 

3. Restart the mini PC and after logging in, open the console 

 

4. Run the following commands one by one: 

 
a. sudo apt install git pip wget -y 

b. python3 -m pip install --upgrade pip 

c. cd ~/Downloads/ 

d. wget 

https://registrationcenterdownload.intel.com/akdlm/irc_nas/18617/l_openvino

_toolkit_p_2022.1.0.643_offline.sh 

e. sudo chmod +x l_openvino_toolkit_p_2022.1.0.643_offline.sh 

f. sudo ./l_openvino_toolkit_p_2022.1.0.643_offline.sh 

 

5. Install the OpenVINO software using the installation assistant, leave the default 

options, ignore any messages about missing packages ( graphical instructions ) 

 

6. Reopen the console 

 

7. Run the following commands one by one: 

 
a. sudo -E/opt/intel/openvino_2022/install_openvino_dependencies.sh 

b. echo 'source /opt/intel/openvino_2022/setupvars.sh' >>~/. bashrc 

c. exec bash 

d. 

/opt/intel/openvino_2022/runtime/3rdparty/hddl/install_IVAD_VPU_dependencie

s.sh 

 

https://releases.ubuntu.com/20.04/


AI for Edge - Kacper Szmitko , Marcin Tajsner 

8. Restart the mini PC and after logging in, open the console 

 

9. Run the following commands one by one: 

 
a. git clone https://github.com/Remni1/ASB-SignLocationUP2.git 

b. cd ASB-SignLocation-UP2 

c. pip install -r requirements.txt 

 

Step 3 - Using the application  

The application is launched using the Python interpreter . In addition, the operation 

of the script can be configured by users through the following options: 

• -- use_cam – specifies that the image is to be captured from the camera 

• -- live_display – determines whether the result of the program's operation is to be 

displayed live while it is running 

• -- save_video – determines whether the result of the program operation is to be 

saved on the disk 

• - frame_rate – determines how many frames the prediction is to be made 

• - video_path – specifies the path to the video file to be processed 

• - fps – defines the desired number of frames per second 

 

6. Repositories 

Link to the code repository: 

 https://github.com/Remni1/ASB-SignLocation-UP2 

Dataset link:  

https://drive.google.com/file/d/1fKvF2E6mOlJrhUvy8w8Vrq6AHkGXhHZR/view?usp=

sharing 


