Digital Logic

Design with FPGA Digital Design with VHDL

Sequential Logic 1

Outline

Latches

Flip-flops

Flip-Flop Operating Characteristics
Shift Register Operations

Johnson Counter

Ring Counter

<
©)
o
™
=
=
(=
2
n
o
a
Q
>
s
3
8
iy
(@]

Gated D Latch

m The latch is a type of temporary storage device that has two stable states (bistable) and is normally placed in a category
separate from that of flip-flops.

m The main difference between latches and flip-flops is in the method used for changing state.
= Output Q follows the input D when EN is HIGH.

Inputs QOutputs

4 ntity DLatch is
D EN Q O |Comments 5 port (D, EN: in std logic:
[Qs QWot: ount std logic)
0 1 0 1 RESET i end entity DLatch;
1 1 1 0 SET
X 0 Qo Qp |Nochange
qn_int~0 . QNot~not £ architecture LogicCperation of DLatch is
o[> qn_int~1 [> QNot : i Crs .
10 signal g int, gn int: =std logic:
EN] . - - -
[:> IO Q~not 11 begin
- » D Q 12 g _int <= gn_int nand (D nand EN};
13 gn_int <= ¢ _int nand (not D nand EN);
q_int~1 Q 14 —— output
INO>OUTO 15 Q <= g int:
16 QFot <= gn_int;
17 end architecture LogicOperation:
QNot$latch
D[>—— = architecture behav of DLatch i=
EN[> QNot 10 bkegin
11 process (EN,D) begin
12 if EN="1"' th
LATCH ! =n
Q$latch L3 0 == D:
14 QWot <= not D;
15 end if;
Q 1é& end process;
17 end architecture;

LATCH

fj‘]’r’ D Flip-Flop

m Flip-flops are synchronous bistable devices.
m The output changes state only at a specified point (leading or trailing edge) on the triggering input called the clock (CLK)

m The D input can be changed at any time when the clock input is LOW or HIGH (except for a very short interval around the
triggering transition of the clock) without affecting the output.

FD Truth table for a positive edge-triggered D flip-flop.
Inputs Outputs
=P QT D CLK Q 0 Comments
0 1 0 1 RESET
¢ 1 1 1 0 SET
1 = clock transition LOW to HIGH

entity dff is
port (D, Clock: in =std logicy

1 LN s

Q-~reg0 g: out scd logic):
end entity dff;
D[>—P :
Clock > ~CLK Q > Q B architecture behav of dff is=s
1'h0O 10 begin
—SCLR 11 process (Clock) kbegin
12 if rising edge(Clock) then
1L @ <= D
1 end if;

end process;

16 end architecture;

%

‘?ID% D Flip-Flop vs D Latch

m The time waveforms show the operation of two different D-type elements: a flip-flop (ff_out signal) and a latch (latch_out signal).
m |dentical forces were supplied to the inputs of both (rst, clk/en, d).

m The state at the flip-flop output changes only when the edge is active. The latch is transparent to the data signal d for half a clock
period. The data at the latch_out output is latched when the en is turned off.

= Unknowingly introducing latches in the design of a synchronous system using FPGA technology will certainly cause errors in the
operation of the device.

[i
120000 ps

Asynchronous Inputs

m Most integrated circuit flip-flops also have asynchronous inputs.
These are inputs that affect the state of the flip-flop independent of the clock.

m They are normally labeled preset (PRE) and clear (CLR).
m An active level on the preset input will set the flip-flop, and an active level on the clear input will reset it.

Q
47 ntity dff cpa is
48 port (D, Clock: in =std logic;
S Pre, Clr: in std logic; -- low active
S0 Q@: ont std logic };
51 end entity dff cpa: Q
52
53 architecture behav of d4dff cpa is

o4 begin
55 process (Clock,Pre,Clr) begin

56 if Clr = '0O' then
S b Q== "0
58 [= elzif Pre = 'C' then
N Q<= Clock [t [2] [3] _[a] [s[_Jel _[7] s _Io[
a0 = el=if ri=zing edge(Clock) then : :
61 Q <= D;: D | | | ! | | | |
62 - end if: Pre _l | ! i ! i
63 - end process; ‘ - ‘ | |
64 end architectare; \ | I \ I |
Clr | | i i
I [I | |
I [I | | |
[| [| I I
Q | 1 I S

T Flip-Flop

m The T (toggle) input of the T flip-flop is synchronous.
m When T is HIGH, the flip-flop changes state.

FTC
— T Ql—=o
4 entity tff is
e IR 5 :port: {T, Clock: in std logic;
j & : ¢ Clr: in std logic; —— actlive low, async
€<D 7 E : R: out =td logic };
(a 8 end entity tff:
L 9
§ i0 %architec:ture behav of tff is
; 11 signal g int: =std logic:='0';
S 12 [begin
% 13 -] proecess({Clock, Clr) begin
o) 14 = if Clr = '0' then
© e — = | 15 g _int <= '0';
8’ : | 16] glsif rising edge(Clock) then
— | | 17 A if T = '.' then
S | FDC | 18 g int <= not g int: -- toggle
o) I j > o a | & 15 [c:alse
o @—I:XO)RZ | 20 g int <= g_int; -- no change
> l . | 21 end if:
I . | 22 end if;
[ClRH | 23 end process;
| | 24 Q <= g int;
- I 25 end architecture:;

Flip-Flop operating characteristics

Propagation Delay Times
Set-up Time

Hold Time

Maximum Clock Frequency
Pulse Widths

Power Dissipation

<
©)
o
™
=
=
(=
2
[%2]
0
a
Q
>
o
4
8
iy
(@]

@ﬂfﬁ Propagation Delay Times

A propagation delay time is the interval of time required after an input signal has been applied for the resulting output change to occur.
m t, 4 from the triggering edge of the clock pulse to the L-to-H transition of the output
m 5, from the triggering edge of the clock pulse to the H-to-L transition of the output

50% on triggering edge 50% on triggering edge

clk / \ clk J \—
Q NS 50% on L-to-H of Q Q \ «— 50% on H-to-L of Q
-~
t

PLH tpHL

m t, 4 from the leading edge of the preset input to the L-to-H transition of the output
m t,, from the leading edge of the clear input to the H-to-L transition of the output

o . .
50% on triggering edge S0%.0n triggering sgleg

/SET \ / /CLR \ /
i Q \ ’ i
Q - 50% on L-to-H of Q - 50% on H-to-L of Q
-
t

PLH

source: Thomas Floyd: Digital Fundamentals

Set-up & Hold times

m The set-up time (t,) is the minimum interval required for the logic levels to be maintained constantly on the inputs (T or D)
prior to the triggering edge of the clock pulse in order for the levels to be reliably clocked into the flip-flop.

50% on data input

T\

I
Ik I
c | -«—— 50% on triggering edge
- I

—
I ts I

m The hold time (t,) is the minimum interval required for the logic levels to remain on the inputs after the triggering edge
of the clock pulse in order for the levels to be reliably clocked into the flip-flop.

50% on data input

N |

D\:\: [

I I
| | 50% on triggering edge
I

-+

th I

: Thomas Floyd: Digital Fundamentals

@ﬂ)r’ Flip-Flop operating characteristics

m The maximum clock frequency (f.,) is the highest rate at which a flip-flop can be reliably triggered.
At clock frequencies above the maximum, the flip-flop would be unable to respond quickly enough.

= Minimum pulse widths (ty) for reliable operation are usually specified by the manufacturer for the clock, preset, and clear inputs.
Typically, the clock is specified by its minimum HIGH time and its minimum LOW time.

m The power dissipation of any digital circuit is the total power consumption of the device.

Comparison of operating parameters for IC families of flip-flops at 25°C.

CMOS Bipolar (TTL)

Parameter 74HCT4A 74AHC74 74LS74A 74F74
tpyr (CLK to Q) 17 ns 4.6 ns 40 ns 6.8 ns
tpr (CLK to Q) 17 ns 4.6 ns 25 ns 8.0 ns
tpur(CLR to Q) 18 ns 4.8 ns 40 ns 9.0 ns
tpr 1 (PRE to Q) 18 ns 4.8 ns 25 ns 6.1 ns
t, (set-up time) 14 ns 5.0ns 20 ns 2.0 ns
tj, (hold time) 3.0 ns 0.5 ns Sns 1.0 ns
tw (CLK HIGH) 10 ns 5.0ns 25 ns 4.0 ns
ty (CLK LOW) 10 ns 5.0 ns 25 ns 5.0 ns
tw(CLR/PRE) 10 ns 5.0 ns 25 ns 4.0 ns
Jinax 35 MHz 170 MHz 25 MHz 100 MHz
Power, quiescent 0.012 mW 1.1 mW

Power, 50% duty cycle 44 mW 88 mW

source: Thomas Floyd: Digital Fundamentals

f]ﬂ’ Shift Register Operations

m A registeris a digital circuit with two basic functions: data storage and data movement.
The storage capability of a register makes it an important type of memory device.

m The storage capacity of a register is the total number of bits (1s and 0s) of digital data it can retain. Each stage (flip-flop) in a shift
register represents one bit of storage capacity; therefore, the number of stages in a register determines its storage capacity.

m The shift capability of a register permits the movement of data from stage to stage within the register or into or out of the register
upon application of clock pulses.

Datain

b

Datain Data out Data out Datain Data out
O g g g > < < < < a >
(a) Serial in/shift right/serial out (b) Serial in/shift left/serial out (c) Parallel in/serial out
Datain
Datain Datain Dataout Dataout Datain
> > > —> —> —> —> —> —> —] —— — — |
Data out Data out
(d) Serial in/parallel out (e) Parallel in/parallel out (f) Rotate right (g) Rotate left

source: Thomas Floyd: Digital Fundamentals

Serial In/Serial Out

The serial in/serial out shift register accepts data serially - one bit at a time on a single line.
It produces the stored information on its output also in serial form.

4 Entity SRGS is
= port (sin, clk: in std logicy
[Q: out =td logic):
7 end entity:
<
£
L d_ff:FF4 g %architecture struct of SRGS is
g 10 signal g int: std logic vector (¢ downto O}
= Clock Q Q 11 [lbegin
C D 12 FFO: dff port map (clk=>clk, d=>sin, g=>g_intc(C0)):
- 13 FF1l: dff port map (clk=>clk, d=>g_int(0), g=>g_int(l})):
()] 14 FF2: dff port map (clk=>clk, d=>g_int(l), g=>g_int(Z));
(@] 15 FF3: dff port map (clk=>clk, d=>g int(Z), g=>g int(3)):
9 16 FF4: 4dff port map (clk=>clk, d=>g int(3), g=>g_int(<)):
17 Q <= g int(4);
—l 18 ~end architecture;
g
R
|
20 ?architecture behav of BRG: is
4 Q 21 =ignal g_int: std logic wvector(¢ downto 0O);
g_int[4..0] 22 begin
23 process (clk) begin
sin D 24 if rising edge(clk) then
25 g int <= g int (2 downto C) & sin;
ck[> 26 end if;
27 end process;
28 Q <= g int(%):
25 end architecture:

Serial In/Parallel Out

m Data bits are entered serially (least-significant bit first) into a serial in/parallel out shift register
in the same manner as in serial in/serial out registers.

= In the parallel output register, the output of each stage is available. Once the data are stored, each bit appears on its respective
output line, and all bits are available simultaneously.

d_ff:FF1 o aB.ol

port (2in, clk: in std logics
Q: out std logic wector(Z downto O))7

%kmtit}' SEG4 is

mo=1 & N

end entity;
] %architectuve behav of S5RG4 is
10 signal g _int: std logic vector (2 downto O} :
11 begin
1z proces=s (clk) begin
13 if rising edge(clk) then
14 g int <= g_int(Z downto) & sin;
15 end if;
16 end process;
17 Q <= g int;
18 end architecture;

sin[>
ck[>

Parallel In/Serial Out

m For parallel in data, multiple bits are transferred at one time.
m SHIFT/LOAD input allows all bits of data to load in parallel into the register.

pin[3..0] 3 qn3~1
o gno 1 gni~1

> gn2~1

sh_nload

clk[>

<
O]
o
T
=
=
=
‘0
o)
(@]
9
4
g
-

4 Entity SRGL4 is
5 port (clk: in std_logic:
3 pin: in std logic_vector(2 downto 0);
7 sh nload: in std_logic:
8 Q: out =td logic };
sh_nload [>— . ond entity -
q_lnt~[30] 10 __
11 %architec:ture behav of 3RGL4 is
pin[3.0] A q_int[3..0] 12 signal g int: std logic vector (3 downto 0);
D 13 [begin

14 = process(clk) begin

clk[> »3—D Q 15 [if rising edge(clk) then
ie [H if sh nload = 'C' then
17 g int <= pin;
i8 =] el=e
18 g int <= g int(Z downto O) & "1';
20 end if;
21 end if:
22 end process;
23 Q <= g int(3);
24 end architecture;

<
O
o
o
=
3
(=
k%)
)
|
9
A
S
a

Parallel In/Parallel Out

m Immediately following the simultaneous entry of all data bits, the bits appear on the parallel outputs.

Q[0]~reg[3.0]

D[3..0]
Clock Q[3..0]
Q[0]~reg[127..0]
D[127.0]
Clock Q[127..0]

20
Sl
32
353
34
S
3e
37/
38
3
40
41
42
43

Entity SRD4 is
port (Clock: in std logic;
! D: in std logic wvector(Z downto O} ;

Q: ont std logic wvector(: downto 0}):

end entity SRD4:

architecture behav of SRD4 is
begin
process (Clock) begin
if rising edge(Clock) then
Q<= D:
end if:
end process;
end architecture:

46
a7
48
49
S0
51
22
53
o4
55
58
57
58
=
60

e T T | T

entity SEDN is
generic(N: positive:=122);
port (Clock: in std logic;
i D: in std logic_vwector(N-1 downto O);
: Q: ont =std logic wector(N-1 downto O)
end entity SEDN:

architecture behav of SRDN is
begin
process (Clock) begin
if rising edge(Clock) then
O <= D:
end if;
end process;
end architecture;

)y

Bidirectional Shift Registers

m A bidirectional shift register is one in which the data can be shifted either left or right.

m |t can be implemented by using gating logic that enables the transfer of a data bit from one stage to the next stage to the right or to
the left, depending on the level of a control line.

right_nleft

g_int~[3..0]

sin
q_int[3..0]
—{ > Ql0.3]
ck[> —{ > Q[0..3]
clk[>
ot entity SRG4 BI is
5 port (clk: in =std logic:
& sin: in std logic;
7 right nleft: in std logic;
8 Q: out =std_logic_wvector(0 to 3})
] end entity;
10 -
il %architecture behav of SRG4_BI is
12 signal g int: std_loglc vector(Q'range);
13 Hkegin
14 =] process(clk) begin
sin D 15 = if rising edge(clk) then
right_nleftD 1a =] if r:!.ght_nle_ft = '_: then .
17 g int <= =in & g int(0 to Z);
18 =] else
15 g int <= g _int(l to 3} & =in;
20 end if;
21 end 1f;
22 end process;
23 Q <= g_int;
24 end architecture:

Johnson Counter

m In a Johnson counter the complement of the output of the last flip-flop is connected back to the D input of the first flip-flop.

m The 4-bit sequence has a total of eight states, or bit patterns. In general, a Johnson counter will produce a modulus of 2n, where n
is the number of stages in the counter.

. Four-bit Johnson sequence.
g e D[- Clock Pulse | @ 0 0 O
D Q2 0 0 0 0 0
e : = A
3 1 1 1 0
4 1 1 1 1
5 0 1 1 1
d ftFF1 6 0 0 1 1
7 0 0 0 1
D E Q-~reg0
Clock
Q
5 entity SR4 JOHN is
d fFEE2 [port (clk: in =td logic:
— 7 Q: onut =td logic wector (2 downto O)
S : ;) o
o g end entity;
Clock Q 10 -
11 I?arc:hitectuve behav of SR4_JCHN is
12 signal g_int: std logic wvector(: downto O):=x"0";
13 begin
d f-FF3 14 process (clk) begin
. 15 if rising edge(clk) then
D 1& g int <= g int (2 downto 0) & not (g _int({3}});
Clock Q 17T end if;
i8 end process;
19 @ <= g_int;
20 end architecture;

e: Thomas Floyd: Digital Fundamentals

Ring Counter

A ring counter utilizes one flip-flop for each state in its sequence. It has the advantage that decoding gates are not required. In the
case of a 10-bit ring counter, there is a unique output for each decimal digit.

Ten-bit ring counter sequence.
Clock Pulse | Q9 O @2 Q3 Q4 05 QO @7 O &
0 1 0 0 0 0 0 0 0 0 0 <
q_int[9.0] 1> Qe-0l 1 0 1 0 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 0
clk 4 o 0o 0 0 1 o 0 o0 0 0
10'h0 5 0 0 0 0 0 1 0 0 0 0
6 0 0 0 0 0 0 1 0 0 0
7 0 0 0 0 0 0 0 1 0 0
8 0 0 0 0 0 0 0 0 1 0
9 0 0 0 0 0 0 0 0 0 1 —
27 entity SR10_RING is 37 %architec:ture behav of 5R10_RING is
28 port 38 signal g_int: =std logic vector(® downte 0):=(5=>"'1',others=>'0");
29 clk: in =cd logic: 39 begin
30 Q. ount St-d_IDgiC_VECt-DI{Q downto ©) 40 process (clk) begin
31 | 4 41 if rising edge(clk) then g int <= g int(Z downto 0) & g int(2): end if:
32 end entity: 42 end process;
23 43 0 <= g int;
34 44 end arch;tecture:

e: Thomas Floyd: Digital Fundamentals

Digital Logic

Design with FPGA Digital Design with VHDL

Sequential Logic 2

f]ﬂ’ Shift Register Operations

m A registeris a digital circuit with two basic functions: data storage and data movement.
The storage capability of a register makes it an important type of memory device.

m The storage capacity of a register is the total number of bits (1s and 0s) of digital data it can retain. Each stage (flip-flop) in a shift
register represents one bit of storage capacity; therefore, the number of stages in a register determines its storage capacity.

m The shift capability of a register permits the movement of data from stage to stage within the register or into or out of the register
upon application of clock pulses.

Datain

b

Datain Data out Data out Datain Data out
O g g g > < < < < a >
(a) Serial in/shift right/serial out (b) Serial in/shift left/serial out (c) Parallel in/serial out
Datain
Datain Datain Dataout Dataout Datain
> > > —> —> —> —> —> —> —] —— — — |
Data out Data out
(d) Serial in/parallel out (e) Parallel in/parallel out (f) Rotate right (g) Rotate left

source: Thomas Floyd: Digital Fundamentals

Serial In/Serial Out

The serial in/serial out shift register accepts data serially - one bit at a time on a single line.
It produces the stored information on its output also in serial form.

4 Entity SRGS is
= port (sin, clk: in std logicy
[Q: out =td logic):
7 end entity:
<
£
L d_ff:FF4 g %architecture struct of SRGS is
g 10 signal g int: std logic vector (¢ downto O}
= Clock Q Q 11 [lbegin
C D 12 FFO: dff port map (clk=>clk, d=>sin, g=>g_intc(C0)):
- 13 FF1l: dff port map (clk=>clk, d=>g_int(0), g=>g_int(l})):
()] 14 FF2: dff port map (clk=>clk, d=>g_int(l), g=>g_int(Z));
(@] 15 FF3: dff port map (clk=>clk, d=>g int(Z), g=>g int(3)):
9 16 FF4: 4dff port map (clk=>clk, d=>g int(3), g=>g_int(<)):
17 Q <= g int(4);
—l 18 ~end architecture;
g
R
|
20 ?architecture behav of BRG: is
4 Q 21 =ignal g_int: std logic wvector(¢ downto 0O);
g_int[4..0] 22 begin
23 process (clk) begin
sin D 24 if rising edge(clk) then
25 g int <= g int (2 downto C) & sin;
ck[> 26 end if;
27 end process;
28 Q <= g int(%):
25 end architecture:

Serial In/Parallel Out

m Data bits are entered serially (least-significant bit first) into a serial in/parallel out shift register
in the same manner as in serial in/serial out registers.

= In the parallel output register, the output of each stage is available. Once the data are stored, each bit appears on its respective
output line, and all bits are available simultaneously.

d_ff:FF1 o aB.ol

port (2in, clk: in std logics
Q: out std logic wector(Z downto O))7

%kmtit}' SEG4 is

mo=1 & N

end entity;
] %architectuve behav of S5RG4 is
10 signal g _int: std logic vector (2 downto O} :
11 begin
1z proces=s (clk) begin
13 if rising edge(clk) then
14 g int <= g_int(Z downto) & sin;
15 end if;
16 end process;
17 Q <= g int;
18 end architecture;

sin[>
ck[>

Parallel In/Serial Out

m For parallel in data, multiple bits are transferred at one time.
m SHIFT/LOAD input allows all bits of data to load in parallel into the register.

pin[3..0] 3 qn3~1
o gno 1 gni~1

> gn2~1

sh_nload

clk[>

<
O]
o
T
=
=
=
‘0
o)
(@]
9
4
g
-

4 Entity SRGL4 is
5 port (clk: in std_logic:
3 pin: in std logic_vector(2 downto 0);
7 sh nload: in std_logic:
8 Q: out =td logic };
sh_nload [>— . ond entity -
q_lnt~[30] 10 __
11 %architec:ture behav of 3RGL4 is
pin[3.0] A q_int[3..0] 12 signal g int: std logic vector (3 downto 0);
D 13 [begin

14 = process(clk) begin

clk[> »3—D Q 15 [if rising edge(clk) then
ie [H if sh nload = 'C' then
17 g int <= pin;
i8 =] el=e
18 g int <= g int(Z downto O) & "1';
20 end if;
21 end if:
22 end process;
23 Q <= g int(3);
24 end architecture;

<
O
o
o
=
3
(=
k%)
)
|
9
A
S
a

Parallel In/Parallel Out

m Immediately following the simultaneous entry of all data bits, the bits appear on the parallel outputs.

Q[0]~reg[3.0]

D[3..0]
Clock Q[3..0]
Q[0]~reg[127..0]
D[127.0]
Clock Q[127..0]

20
Sl
32
353
34
S
3e
37/
38
3
40
41
42
43

Entity SRD4 is
port (Clock: in std logic;
! D: in std logic wvector(Z downto O} ;

Q: ont std logic wvector(: downto 0}):

end entity SRD4:

architecture behav of SRD4 is
begin
process (Clock) begin
if rising edge(Clock) then
Q<= D:
end if:
end process;
end architecture:

46
a7
48
49
S0
51
22
53
o4
55
58
57
58
=
60

e T T | T

entity SEDN is
generic(N: positive:=122);
port (Clock: in std logic;
i D: in std logic_vwector(N-1 downto O);
: Q: ont =std logic wector(N-1 downto O)
end entity SEDN:

architecture behav of SRDN is
begin
process (Clock) begin
if rising edge(Clock) then
O <= D:
end if;
end process;
end architecture;

)y

Bidirectional Shift Registers

m A bidirectional shift register is one in which the data can be shifted either left or right.

m |t can be implemented by using gating logic that enables the transfer of a data bit from one stage to the next stage to the right or to
the left, depending on the level of a control line.

right_nleft

g_int~[3..0]

sin
q_int[3..0]
—{ > Ql0.3]
ck[> —{ > Q[0..3]
clk[>
ot entity SRG4 BI is
5 port (clk: in =std logic:
& sin: in std logic;
7 right nleft: in std logic;
8 Q: out =std_logic_wvector(0 to 3})
] end entity;
10 -
il %architecture behav of SRG4_BI is
12 signal g int: std_loglc vector(Q'range);
13 Hkegin
14 =] process(clk) begin
sin D 15 = if rising edge(clk) then
right_nleftD 1a =] if r:!.ght_nle_ft = '_: then .
17 g int <= =in & g int(0 to Z);
18 =] else
15 g int <= g _int(l to 3} & =in;
20 end if;
21 end 1f;
22 end process;
23 Q <= g_int;
24 end architecture:

Johnson Counter

m In a Johnson counter the complement of the output of the last flip-flop is connected back to the D input of the first flip-flop.

m The 4-bit sequence has a total of eight states, or bit patterns. In general, a Johnson counter will produce a modulus of 2n, where n
is the number of stages in the counter.

. Four-bit Johnson sequence.
g e D[- Clock Pulse | @ 0 0 O
D Q2 0 0 0 0 0
e : = A
3 1 1 1 0
4 1 1 1 1
5 0 1 1 1
d ftFF1 6 0 0 1 1
7 0 0 0 1
D E Q-~reg0
Clock
Q
5 entity SR4 JOHN is
d fFEE2 [port (clk: in =td logic:
— 7 Q: onut =td logic wector (2 downto O)
S : ;) o
o g end entity;
Clock Q 10 -
11 I?arc:hitectuve behav of SR4_JCHN is
12 signal g_int: std logic wvector(: downto O):=x"0";
13 begin
d f-FF3 14 process (clk) begin
. 15 if rising edge(clk) then
D 1& g int <= g int (2 downto 0) & not (g _int({3}});
Clock Q 17T end if;
i8 end process;
19 @ <= g_int;
20 end architecture;

e: Thomas Floyd: Digital Fundamentals

Ring Counter

A ring counter utilizes one flip-flop for each state in its sequence. It has the advantage that decoding gates are not required. In the
case of a 10-bit ring counter, there is a unique output for each decimal digit.

Ten-bit ring counter sequence.
Clock Pulse | Q9 O @2 Q3 Q4 05 QO @7 O &
0 1 0 0 0 0 0 0 0 0 0 <
q_int[9.0] 1> Qe-0l 1 0 1 0 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 0
clk 4 o 0o 0 0 1 o 0 o0 0 0
10'h0 5 0 0 0 0 0 1 0 0 0 0
6 0 0 0 0 0 0 1 0 0 0
7 0 0 0 0 0 0 0 1 0 0
8 0 0 0 0 0 0 0 0 1 0
9 0 0 0 0 0 0 0 0 0 1 —
27 entity SR10_RING is 37 %architec:ture behav of 5R10_RING is
28 port 38 signal g_int: =std logic vector(® downte 0):=(5=>"'1',others=>'0");
29 clk: in =cd logic: 39 begin
30 Q. ount St-d_IDgiC_VECt-DI{Q downto ©) 40 process (clk) begin
31 | 4 41 if rising edge(clk) then g int <= g int(Z downto 0) & g int(2): end if:
32 end entity: 42 end process;
23 43 0 <= g int;
34 44 end arch;tecture:

e: Thomas Floyd: Digital Fundamentals

Digital Logic

Design with FPGA Digital Design with VHDL

Sequential Logic 3

<
©)
o
™
=
=
(=
2
[%2]
0
a
Q
>
o
4
8
iy
(@]

Outline

Asynchronous Counters

Finite State Machines (FSMs)
Synchronous Counters

Up/Down Synchronous Counters
Cascaded Counters

Counter Applications

ffn:ff1
Asynchronous Counters
—{> ql1.0]
m The term asynchronous refers to events that do not have a fixed time relationship with each other ffn:ff0
and do not occur at the same time.
m An asynchronous counter is one in which the flip-flops within the counter do not change states at clk
exactly the same time because they do not have a common clock pulse.
Clk 1 2 3 4 fn:ff1
_I | | ! dE gn~reg0
ffo:qn | - 1.h' T o ana
ffo:q | e
ff1:q S
= ﬁ;r..:f::;::l--'rego
2-Bit Asynchronous Binary Counter - 1-h' -
m clk is applied to the clock input (clk) of only the first flip-flop, ffO, which is always the least a~regd
significant bit (LSB). The second flip-flop, ff1, is triggered by the gn (inverted) output of ff0. q
m Because of the inherent propagation delay time through a flip-flop, a transition of the input clock "

pulse (clk) and a transition of the gn output of ffO can never occur at exactly the same time.

g[o]~owtput

finffo ffnff1
n~clketrl
clk~input clk~imputclketrl 3 gnclketr fhrctin IkrtrI[El
O _IBU KCTR qn qg~feeder g 4 P
| an q [FATA6_comEou] [> afe-1]
qn~0 10 OBLU
- L COMB -
Ll

qn~0
DATAC COM q
0 1'h1 1'h1

rce: Thomas Floyd: Digital Fundamentals

f]?’ Asynchronous Counters

ffn:ff2
3-Bit Asynchronous Binary Counter cli qn
m This counter can be easily expanded for higher count, by : : (> al2.0]
connecting additional toggle flip-flops. e
m Asynchronous counters are commonly referred to as ripple cli an
counters for the following reason: the effect of the input clock : E
pulse is first “felt” by ff0. This effect cannot get to ff1
immediately because of the propagation delay through ff0. fn:ffo
Then there is the propagation delay through ff1 before ff2 oIk an
can be triggered. Thus, the effect of an input clock pulse i d q

“ripples” through the counter, due to propagation delays, to
reach the last flip-flop.

m Cumulative delay of an asynchronous counter is a major clk 1 2] [3 4]
disadvantage because it limits the rate at which the counter :

can be clocked and creates decoding problems. ff0:q m___

m The maximum cumulative delay in a counter must be less

I | |
e N | |
than the period of the clock waveform. B | | F————-
I 1 I 1 (|
I [(] -
ff2:q _LJ L L
[
- i —1 1+ to (cktoq0) —1 11— t,, (clk to g0)
[[|
oy (clk to g0) 7 [T tmn(@n0to T e ey (nOto gy
q1) ——=1 <+ tp(antto q2)

source: Thomas Floyd: Digital Fundamentals

% FSMs

m A state machine is a sequential circuit having a limited (finite) number of states occuring in a prescribed order.
m A counter is an example of a state machine; the number of states is called the modulus.

Two basic types of state machines are the Moore and the Mealy.
m The Moore state machine is one where the outputs depend only on the internal present state.
m The Mealy state machine is one where the outputs depend on both the internal present state and on the inputs.

source: Thomas Floyd: Digital Fundamentals

Only for Mealy Machine

Next State Function
Combinational Logiq

Next_state

State Register

DFF

Present_state

ﬁ:;t Function

[

ombinational Logjc Outputs

RST

FSM Synthesis

CE=0

m Next-state table:

.
T m /
state 0 y
ne 001

zero zero o
one one two 010
< two two zero 100
©)
a
t m The simplest coding example: zero = 00, one = 01, two = 10.
E Next state
()]
@ Present AL
o Output
% state ce Q2 Q1 Qo
© 00 00 01 001
=) - FDC
a 01 01 10 010 o] j =
10 10 00 100 B N
m Next state and output equations: —
y0p = ce y0 + ce y1 y0 FDC
ylp =ceyl + cey0 j—\ o @ =
- — s Rz
Q0 = yly0 g = c
Ql — yO = CLR

=]
Q2 =yl

<
O]
o
T
=
=
=
‘0
o)
(@]
9
4
g
-

1 FSM Synthesis

y0p =ce y0 + ce y1 y0
ylp =ceyl + cey0

Q0 = y1y0
Q1=1y0
Q2=yl
4 entity fsm 3st is
=) port(clk, rst, ce: in std logic:
[Q: ont =td logic vector(Z downto O} }:
7 end;
8
g %architecture struct of fsm 33t is
10 signal yO0p, vlp, v¥0, ¥l: std logicy
11 [Hbegin
12 —-— next state logic
13 vip <= (not ce and y0) or
14 {ce and not y0 and not yl);
15 vip <= (not ce and yl) or
1& {ce and y0)
17
18 -—- sate register
15 —lstate_mem: process(clk,rst) begin
20 if rst='1"' then
21 yo="0"; ylg="0";
22 - elsif (clk'event and clk="'1'}) then
23 vi<=yv0p; vl<=ylp:
24 - end if;
25 Fend process;
26
27 -- output logic
28 Q{0)y<={not v0 and not wyl}):
28 Q{l)==v0;
30 Q{2)==vl;
31 ~end architecture:

fam_3st:1
and3b2 or2
= yip_imp_y0p1 Q_0_and0000_imp_Q_0_and00001
y0p_and0001_imp_y0p_and00011
and2b1 or2 fdc
y0p_and0000_imp_y0p_and00001 ylp_imp_ylp1
= = 1
yi
and2 fdc
- = o a 4
y1p_and0001_imp_y1p_and00011
- s p
v

and2b1

"
-]
)

y1p_and0000_imp_y1p_and00001

fsm_3st

G

ﬂfr FSMs - VHDL design guidelines

m For HDL, process is the best way to describe FSM components

m Next state equations can be described directly in the sequential process or in a distinct combinatorial process.
The simplest coding example is based on a case statement.

m A state register can be a different type (such as: integer, bit_vector, std_logic_vector).
It is common and convenient to define an enumerated type containing all possible state values
and to declare state register with that type.

m Non-registered outputs are described either in the combinatorial process or in concurrent assignments.
m Registered outputs must be assigned within the sequential process.
m Registered inputs are described using internal signals, which are assigned in the sequential process.

Only for Mealy Machine

|
|
| Next State Function State Register :
' |
| AL T T
Inputs | =y N
| _
| Case... When... .. ' . A
- = Next_state | Rising edge(clk Output Function | OQutput
If... Then... Else... — g_edge(clk) Lf— P ' Q‘,Ij MRS
1 F!
R h_

Present_state

<
O]
o
T
=
=
=
‘0
o)
(@]
9
4
g
-

FSMs - VHDL

(¥ = - N [R) Y -

10
11
12

entity fam 3at is

port({ clk, rst, ce: in std logic:

end;

Q:

out =std logic wvector(Z downto O)

architectnre behav of fsm 3=t is

type =tate iz (zero,one,two);

signal present_state, Next_sState: sState;

I_':_|hegin

RST

1z
14
13
16
17
18
1g
20
21
22
232
24
23
26
27
28
24
30
31
22
55
2
S
36
37
38
3
40
41
42
23
G
]

Ifsm: process (present state,ce) begin
—| case present_state is
when zero =>

Q <= "o01";

= if ce="_" then

- next state <= one;
= else

next_state <= zero;
- end if;
when one =>
Q <= "olionv;
= if ce="_" then

next_state <= two;
= else

next state <= one;
b end if;

when two =>
Q <= ™igo©;

= if ce=""" then
- next sState <= Zero;
= else

next_state <= two;
- end if;

end case;

Fend process;

—|state _mem: process(clk,rst) bkegin

E if rsc="_" then

= present_state <= Zero;

[elsif (clk'event and clk='_"'") then
present state <= next_state:;

- end if;

Fend process;

“end architecture:;

<
O
o
o
=
3
(=
k%)
)
|
9
A
S
a

FSMs - VHDL

Binary encoding

present_state:1

e |

B2

fdc
o o
£
— =T
FFd1

andzn?

Culd_mp_ouid

One-hot encoding
present stete:
FFdi-In_imp:1 o
andz o = =
} = : e ||
= FFId1
FFdi-in3
FFd1-In_imp
ol
*
1P
FFRd3

F5M

Synchronous Counters

m The term synchronous refers to events that have a fixed time relationship with each other.
m A synchronous counter is one in which all the flip-flops in the counter are clocked at the same time by a common clock pulse.

2-Bit Synchronous Binary Counter 15 library icee;
ff:-FF1 20 use ieee.std logic 1164.all;
N 21
E q~rego — > Q[1.0] 22 entity cntr2b is
yip d 23 M port(clk: in =td logic;
::). clk a 24 - Q: omt std logic vector (Ll downto 0)):
25 —end:
ClkD—l 26 %architecture behav of cntrib is
27 signal y0,y0p,vyl,ylp: std logic;
ff:FFO 28 [Ibegin
E ' 29 FFO: entity work.dff
d g~reg0 30 port map (clk=>clk, d=>y0p, g==>v0):
B 31 FFl: entity work.dff
32 port map (clk=>clk, d=>ylp, g=>vl1):
clk il e vop <= not y0;
34 vip <= vl =xor v0;
35 QIO) <= v0: Q1) <= w1
™ 36 Lend architecture;
1 library ieee;
2 use ieee.std_logic 1164.all;
3] nse ieee.std logic unsigned.all;
Clk 1) 3 4 4 use ieee.numeric std.all;
I I | I
11 I_T_Jarc:h'itecture behav of cntr?b is
ffoq 12 gignal cntr: std logic vector(Q'range) :="00";
- | | 13 begin
14 cntr proc: process(clk) begin
ff1 :q 15 if rising_edge(clk) then
- - 16 cntr <= cntr +1:
17 end if;
18 end process;
Q <= cntr;
20 end architecture;

Synchronous Counters

3-Bit Synchronous Binary Counter 4-Bit Synchronous Binary Counter

clk H || || || || [I—”—”—”—”—”—”—”—”—”—
1 L

o

vl

“]
A

2
T A
A

B =

2

J:

9

Qo)]

g
|

| Q2) !

2 P o

4 b | JE O O O
o (<) N N O T T N L
=
3
= : c
O & entity cntrNb re is 6 entity cntrNb fe is
g 7 generic (N: positive:=2); 7 generic(N: positive:=%);
Q 8 port(clk: in std logic; g8 port{clk: in std logic;
I3} 9 Q: out std logic_vector(N-1 downteo 0)); 3 Q: out std logic_wector(N-1 downto 0));
. 10 end; 10 end;
3 11 architecture behav of cntrNb_re is 11 architecture bshav of cntrNb fe is
— 12 signal cntr: std logic_wvector (Q'range) :=(others=>"'0"); 12 signal cntr: std logic vector(2'range) :=(others=>"'0");
_(-o_g 13 begin 13 begin
O 14 cntr proc: proecess(clk) begin 14 cntr proc: process(clk) begin
o 15 if rising edge(clk) then 15 if falling edge(clk) then

16 cntr <= cntr +1; 16 cntr €= cntr +1;

17 end if; 17 end if;

18 end process; 18 end process;

159 0 <= cntr; 15 Q2 <= cntr;

20 end architecture; 20 end architecture;

: Thomas Floyd: Digital Fundamentals

States of a BCD decade counter.
Synchronous Counters Clock Pulse 0. o o
Initially 0 0 0
1 0 0 0
. 2 0 0 1
4-Bit Synchronous Decade Counter 3 0 0 I
4 0 1 0
5 0 1 0
FDCE 6 0 1 1
= D Q -] 7 0 1 1
L = 8 1 0 0
. 9 1 0 0
iR 10 (recycles) 0 0 0
I
| FDCE clk 1 20 3] (4] [5] |6 [7] |8
E - D} e 2 o1 | | | | | | I |
a @ = Qo) ©of t ot ool | 0
c | |
CLR |] | ! |
' Q1) ooty fojo]l jfo}o
T | : S s s
FDCE Q@) o ol it fo
} S ——
l | :

CLR
ANDZ J
e FDCE Binary counter
D_*: :|) = D a = oz
Ol
Al X0 @ CE Qo
> c
CLR Q1
CLR I
Q2
Q3
[ce> CE CEO +—=n
clk C TCL—=a
AND2
OR2
Rsync /

Rsync <=q3 and q0

Synchronous Counters

4-Bit Synchronous Decade Counter

11 Ehntity d cntr4fceo is

12 Port (clk : in std logic;

13 rst : in std logic;

14 ce : in std logic;

15 tc : out std logic;

16 ceo : out std logic;

17 - g : out std_logic_vectar (2 downto °))
18 ~end entity d_cntrélceo;

19

20 [Harchitecture beshav of d_cntr4lceso is

21 signal g _tmp : std _logic vector(g'range) := x"0";
22 L signal teci : std logic;

23 [Hbegin
24 Flprocess (clk,rst) begin

25 = if r=t="1" then
26 g tmp <= =x"0";
27 = el=sif rising_edge (clk) then
28 = if ce="1" then
25 [if tei="1" then = q_tmp[3.0]
30 g_tmp <= x"0";
31 — else clk
32 g_tmp <= g_tmp + 1; q[3..01
33 - end if; rst
34 - end if;
35 + end if; '
36 -end process; ThOcn AddO q_tmp~[3..0]
37 -- outputs A[3..0] OUTI[3..0] 0
38 tei €= "1' when (g tmp=%) else "0'; 4'h1 B[3..0] 4'h0 1
39 ceo €= (tci and ce);
40 tc €= tci;
4] g <= g_tmp;
42 ~end architecture kehav; ce ceo
: Equalo }_
e A[4..0] 3
y ouT
5'h9 B[4..0]

Up/Down Counter

m An up/down counter is one that is capable of progressing in either direction through a certain sequence.
= An up/down counter, sometimes called a bidirectional counter, can have any specified sequence of states.
m In general, most up/down counters can be reversed at any point in their sequence.

ck[>

¢ [Hentity cntrNbi is
7 generic(N: positive:=3): Up/Down sequence for a 3-bit binary counter.
8 port(clk,rst,up ndown: in std logic:
g Q: ount std_logic vector{ﬁ—; downto O)) Clock Pulse Up 2 & & Down
10 end; N - 0 C 0 0 0 D)
11 %architecture behav of cntrNbi is 1 C 0 0 1 bl
1z signal cntr: std logic wector (Q'range) :=(others=>'C"}; 2 C 0 1 0 p)
13 begin 3 C 0 1 1 b}
14 %cntr_prac: process (clk) begin 4 C 1 0 0 b}
15 —| if rising edge(clk) then 5 C 1 0 1 b}
16 if rst="_'" then cntr <= (others=>'0"): 6 C 1 1 0 b}
17 elsif up ndown="1"' then cntr <= cntr +.: 7 C 1 1 1)
18 else cntr <= cntr -1 end if;
15 Foend 1f;
20 Fend process;
21 Q <= cntr;
22 lend architecture; up_ndown Up Down Up Down
1 1 |
0 Bl AR A A A A O A A
up_ndoun (5.3 EEEEE SRR
Thoan Add 1 I | | | | | | | | | | | |
gT s oUTE0] o[l 1201 Q(0) _QlT oft]oJiloftfoft]lo]1]o]t]o
i o N 1 RERDEERERERER
1 :T;:: oUT2.0) cntr[2..0] Q(1) (_}i(_} trifofiri]o : 0 TI 0 : 0 |T| 0 : 0
i BERERREEEEERE
I [B 1
I IR 1

1 | |
| : | | | | | | |

| I |
Q(2) oloto 0|1|0 0 ll['Jl(}i[Jl() 0

e: Thomas Floyd: Digital Fundamentals

Cascaded Counter

Counters can be connected in cascade to achieve higher-modulus operation.
In essence, cascading means that the last-stage output of one counter drives the input of the next counter.

m Asynchronous Cascading

clk [—

async_counter_Zb:mod4

=

clk

ffn:ff1

q[1..0]

ffn:ff0

clk

async_counter_3b:mod8

=

ffn:ff2

q[2..0]

2:0

ffn:ff1

ffn:ffO

4 x8=32
clk
:1 12 13 :4 :5 :6 :7 18 :9 :10:11I12:13:14:15:16|17:18:19:20E21I22:23:24:25:26:27:28:29:30I31:32
| |
q(0)
I I [| I | 1 I
| | | | | | | I I | | I I | |
a(1) | I I I I I I I r
|

source: Thomas Floyd: Digital Fundamentals

q[4..0]

Cascaded Counter

m Synchronous Cascading

When operating synchronous counters in a cascaded configuration, it is necessary
to use the clock enable (CE) and the terminal count (TC) or clock enable
output (CEQO) functions to achieve higher-modulus operation

m Full-modulus Cascading
An overall modulus (divide-by-factor) is the product of the individual moduli of all the cascaded counters

o) tit tr xN i
10x 10x 10x = 1000 Pty oner_w 1
10 generic (N : natural := 2);
11 port (clk : in std logic;
C“(D—< 12 rst : in std logic;
d_cntr4Aceo:\gen:1:cntr 13 ce : in std logic;
14 ceo : out std logic;
clk 3.0 : 1 * - 0 H
q[3..0] d_cntr4Aceo:\gen:2:cntr]]:2 . .q out 5tC_i_lC|g’.‘LC_\TeCtC\I(4 N-1 downto)) ;
rst end entity cntr xN;
I’StD— o] 17 architecture struct of cntr xN is
ceD ce ceo clk q[3..0] - g D q[’I'IO] 18 signal cei : std logic vector (N downteo 0);
rst i . = 19 begin
d_cntrd4Aceo:\gen:3:cntr M - cei(l) <= ce: ceo <= cei(N);
€ 21 gen: for 1 in | to N generate
et cntr: entity work.d cntrdfceo
23 port map{clk,rst,cei(i-1) ,open,cei(i),
24 g{(i*4) -1 downto (i-1)%*4));
ceo ey end generate;
26 end architecture struct;

’Fﬂfr’ Cascaded Counter

m Truncated Sequences
Often an application requires an overall modulus that is less than that achieved by full-modulus cascading. A truncated sequence
must be implemented with cascaded counters with LOAD.

O 16-bit Loadable Synchronous Binary Counter
Let’'s assume that a certain application requires a divide-by-40,000 counter (modulus 40,000). The difference between 65,536
and 40,000 is 25,536, which is the number of states that must be deleted from the full-modulus sequence. The technique used in
the circuit is to preset the cascaded counter to 25,536 (63C0 in hexadecimal) each time it recycles, so that it will count from
25,536 up to 65,535 on each full cycle. Therefore, each full cycle of the counter consists of 40,000 states.

26 = 65,535 65,536 — 40,000 = 25,536 (x"63C0")

cntrNbL:cntr_ 0

load

Thoan AddO

A15.01 § @ outiis.ol 0

16’630 D[15.0] 1oni 3[15“®\J |—1
D

k[clk Lok Q Ql15.0] [Q[15.0]

16M0 R Equalo — > TC

Al15.01 ouT -
16°hffff B[15.01[=

cntr~[15..0]

cntr[15..0]

0

source: Thomas Floyd: Digital Fundamentals

<
O
o
T
=
=
=
2
o
o)
|
L
(o)
o
A
IS
iy
|

Cascaded Counter

m Truncated Sequences

woh =1 M

10
11
1z
13
14
15
16
17
18
159
20
21
22
23
24
25
26
27
28

entity cntrNbL is

generic(N: positive:=l1g);
—| port(clk, load: in std logic:
. D: in std_logic_wector (N-1 downto O):
TIC: omt =td_logic;
- Q: out std logic wvector (M-I downto CO));
—end;
Harchitecture behav of cntrNbL is

— signal cntr: std logic vector(Q'range):=(others=>"0"});
[begin
Flentr proc: process(clk) begin
] 1if rising edge(clk) then
= if load="1"' then
cntr <= D;
= else
cntr <= cntr +.;
- end if:
- end if;
Fend process;
Q <= cntr:;
IC <= "1'" when cntr=ECQC5Q else "O';
~end architecture;

constant ECSQ: std logic wector (Q'range) :={others=>'1"'};

FF/LUT: 16/17

FF/LUT: 16/25

37
38
2L
40
41
42
43
45
45
46
47
48
45
a0
51
52
&3
=i
i)
56
a7
58
S5
&0

ntity cntrNbDR is
generic(N: positive:=18):
port(clk, rst: in std logic:
© D: in std logic vector(N-1 downto O}
TC: out std logic;
Q: ont std logic vector(H-1 downte C0)):
end,'-
%architecture behav of cntrNBEDR is
signal cntr: std logic wector(Q'range) :=(others=>'0"'};
—bkegin
Flentr proc: process(clk) begin
] 1if rising edge(clk) then

[=] if rst="'1' then

cntr <= (others=>'0"'});
= elsif cntr=D then

cntr <= (others=>"0"):;

= else
cntr <= cntr +1;
b end if;
Foend 1f;
Fend process;
Q <= cntr;
TIC == '"1"'" when cntr=D else '

=]

~end architecture:

"%‘ﬁ Counter Decoding

®= |In many applications, it is necessary that some or all of the counter states be decoded.

m The decoding of a counter involves using decoders or logic gates to determine when the counter is in a certain binary
state in its sequence.

m Forinstance, the terminal count (TC) function previously discussed is a single decoded state (the last state) in the
counter sequence.

Qo {q0>
Qi {af>
Q2 » Tz
ok J l
[ce>—|CE CEQ —=a % 8
[ck>—>C TC —a 2 € LJ
R
dec?
dec2
ck |1 2 sl ol sl [s|[7]_ [s]
\ I I
| [I 1 I I 1 I
©] B
[I | I 1
q! i L
[I 1 1
[I]
g2 | l : L
[I 1 I
[1 I
dec2 | | ! |
| I
dec7 | |

source: Thomas Floyd: Digital Fundamentals

f]?’ Apps: 7Segment Display Multiplexer

m A simplified method of multiplexing BCD numbers to a multidigit 7-segment display

m 4-digit numbers are displayed on the 7-segment readout by the use of a single
BCD-to-7-segment decoder

———— i — — — — ———— —

: MUX [
| \ :
N |
| \
; AN [
[| 7-seg I
' s decoder |
| r
I /’/ |
/ |
: / |
|
| s N S s
; : Rl
I' | One-hot : ,_l l_l l_l l_l
—t 1 T \ T
I SRG i AN1 AN2 AN3 AN4
! |
' |
L
_______________________ |
Refresh period = 1ms to 16ms ‘
"—r'*\ Digit period = Refresh / 4
ANT N/ —
AN2 N/
AN3 ./
AN4 A A

Cathodes Y Digit0_¥_ Digit1_X_Digt2_X_ Digit3 ¥_

Apps: 7Segment Display Multiplexer

5 ntity muxNoh 4x1 is | MUX :
& Generic(N : positive:=22); l \ r |
7 Port(d0,dl,d2,d3: in =scd logic wvector (M-I downto O); | \ :
8 sel oh: std logic vector(: downto O); ; 7-seg |
g yv: ont std logic wector (-1 downto CO) }); 1 .
10 end entity rr.'aan;_&xl:_ : // decoder :
-- 5 entity SRN RING is : // |
—‘i 6 generic(N: positive:=10});; | /__ :
- T port (clk: in std logic: I |
-: 8 Q: ount =td logic wvector(N-1 downto O})): l I
e end entity; I'| One-hot :
ol 1022 Entity dec7seg is —:_)‘ SRG ,
_—; 11] 43 Port (bed : in std logic_vector (3 downto 0); | :
- 12 | 44 seg : out std logic wvector (& downto 0)}); | |
::U 13| a5 end entity decTVseg; !_ ______________________ |
Far __'_ A6
—i 47 architecture ttakle of decT=zeg i=s
.| %8 Hhbegin 24 entity s7x4 drv is
| with bed select 25 port (clk 1kHz: in std logic;
oo [seg<= "1111001" when x"1", 26 DO,D1,D2,D3: std logic vector (2 downto 0) ;
20 51 "0100100" when x"2T, 27 Seg_out: out std_logic_vector(f downto 0O}
52 "0 200" when ®R"IT, 28 BN ocut: out std logic vector(Z downto 0)
53 "O0011001" when =x"4", 23):
54 "O0010010" when =x"S", 30 end entity:
55 0000010 when =x"&", 31 -
56 "1111000" when x"7", S %architecture struct of =s7x4_drv is
57 "00O00000" when x"E", 33 signal g mux, g srg: std logic vector (i downto 0);
58 0" when x"a", e Hbegin
&g " when x"0", 35 mux_inst: entity work.muxNoh 4xl
36 generic map (H=><)
&0 "0111111 " when others: B
_ . 3 = port map (d0=>D0, dl=>D1, d2=>D2, d3=>D3,
61 ~end architecture ttable: a8 L sel ohes>qg srg, y—>q mux) ;
S onehot_inst: entity work.SEN_RING
40 generic map (H=><)
41 port map (clk=>clk 1kHz, Q=>g srg):’
42 dec7s_inst: entity work.dec7seg
43 port map (bcd=>g mux, seg=»>3eg_out);
44 AN out <= g_srg;
45 “end architecture;

Apps: 7Segment Display Multiplexer

4 entity 574 drv is I MUX :
5] -] port (clk_lkHz: in =td logic; o ' |
& .~ DO0,D1,D2,D3: std logic wector (3 downto 0): Digit 0 | I
7 Seg_out: out std logic wvector(c downto CO): Digit 1 : 7-seg : Seg_out(6:0)
8 AN out: ont std logic wector (2 downto O) I .
L s - - Digit 2 : decoder | |
10 Lend entity; Digit 3 ! :
11 : I
12 Flarchitecture behav of 87r4 drv is | :
13 signal one_hot: =td logic vector(: downteo O):i=x"E": | |
14 signal bed: std logic vector (2 downto 0): ! | AN_out(3:0)
B - - ckikdz | | One-hot I
< 16 [Clbegin 1| SRG |
E-D 17 onehot_reg: process(clk 1kHz) begin : |
e 18 = jf rizing edge(clk_1kHz) then | :
= 19 one hot <= one_ hot (2 downto C) & one hot(3): T T T T T T T T T T T T T T T e e
-"é S end if;
c 21 - end process;
i) 22
$ 23 data mux: with one_hot select
() 24 becd <= d0 when "11107,
o 25 dl when "1101",
8’ 26 d2? when "1011",
- 27 d3 when others:
E 28
[@)) 29 decoder: with bcd select
5 30 Seg out<= "1111001" when x"1",
31 "0100100™ when ="2",
32 "0110000"™ when x"3",
33 "0011001" when x"4",
34 "0010010™ when =x"5",
35 "O000010"™ when x"6",
36 "1111000"™ when =x"7",
37 TO000000" when x"E2",
38 "O0010000"™ when x"3S7,
39 T1000000"™ when "0V,
40 "0111111" when others;
41 AN out <= one hot;
42 ~end architecture:

