
11010100010101001001000101101010101001001001

00111101000100101010110101010111000101000101

00100011100111010000001111001000101010010010

00001010010100101001001001000100010001000010

00111101010001010100100100010110101010100100

10010011110100010010101011010101011100010100

01010010001110011101000000111100100010101001

00100000101001010010100100100100010001000100

00100011110101000101010010010001011010101010

01001001001111010001001010101101010101110001

01000101001000111001110100000011110010001010

10010010000010100101001010010010010001000100

01000010001111010100010101001001000101101010

10100100100100111101000100101010110101010111

00010100010100100011100111010000001111001000

10101001001000001010010100101001001001001111

01000100101010110101010111000101000101001000

11100111010000001111001000101010010010000010

10010100101001001001000100010001000010001111

01010001010100100100010110101010100100100100

11110100010010101011010101011100010100010100

10001110011101000000111100100010101001001000

00101001000111001110100000011110010001010100

10010000010100101001010010010010001000100010

00010001111010100010101001001000101101010101

00100100100111101000100101010110101010111000

10100010100100011100111010000001111001000101

01001001000001010010100101001001001000100010

00100001000111101010001010100100100010110101

01010010010010011110100010010101011010101011

10001010001010010001110011101000000111100100

01010100100100000101001010010100100100100010

00100010000100011110101000101010010010001011

01010101001001001001111010001001010101101010

10111000101000101001000111001110100000011110

01000101010010010000010100101001010010010010

01111010001001010101101010101110001010001010

01000111001110100000011110010001010100100100

00010100101001010010010010001000100010000100

01111010100010101001001000101101010101001001

00100111101000100101010110101010111000101000

10100100011100111010000001111001000101010010

01000001010010001110011101000000111100100010

10100100100000101001010010100100100100010001

00010000100011110101000101010010010001011010

10101001001001001111010001001010101101010101

11000101000101001000111001110100000011110010

00101010010010000010100101001010010010010001

00010001000010001111010100010101001001000101

Digital Logic

Design with FPGA
Synchronous circuits design

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Outline

◼ Good design practices

◼ Techniques for designing synchronous systems

◼ Construction of synchronization circuits

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Hierarchical structure of the project

◼ The use of hierarchy allows to increase the readability of the design

◼ Correct division into functional modules facilitates reuse and debugging

Example of division

based on function type

State Machines
One-hot
Binary

Enumerated

Counters
Adders/Subtractors

Bit Shifters
Accumulators

Building Blocks
Standard Widths
Pipeline RAMs

Datapaths
Pipelining

Muxing/De-Muxing
Arithmetic

CoreGen
Parametizable functions

FIFOs
RAM

Technology-Specific Functions

Specific Functions

RAM
Other IP/Cores

Top Level of Design
Infer or instantiate I/O here

FIR Filters

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Design tips: Increase the readability of your design

◼ Create hierarchical blocks based on:

 Functional consistency within the block

 Minimal routing between blocks

◼ Use meaningful labels for blocks and the signals

◼ Separate independent clock domains

 Define clear relationships between clock signals

◼ Keep source file sizes reasonable

 Makes synthesis and debugging easier

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Design tips: Design for Reuse

◼ Define a set of core modules common to all projects

 Register banks

 FIFO memories

 Other standard features

◼ Name library elements based on their functions and implementation

technique

 Makes it easier to find the item you want

 Example: REG_16X8_M10 (bank of 16 8-bit registers dedicated to the MAX10 platform)

◼ Store defined libraries/packages/blocks in a directory independent of the

EDA tools you use

 Makes sharing easier

 Protects against damage/destruction, e.g. when updating tools

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Outline

◼ Good design practices

◼ Techniques for designing synchronous systems

◼ Construction of synchronization circuits

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Why synchronous devices?

◼ Synchronous systems are more reliable

 Events are analyzed only on clock edges that occur at precisely defined time intervals

 The outputs from one level of logic have the entire clock period to propagate to the input of the next level

 Offsets between the times of successive data arrival are allowed within the same clock period

◼ The problem of asynchronous devices

 Delays with a specific value (e.g. 3.5ns) – more difficult to implement, may have a large spread (different

system parameters)

 Many signals may require specific timing (e.g. 4ns stable data before the selection signal appears, etc.)

 Relying on propagation delays can result in possible glitches and spikes, because propagation delay

varies with temperature and voltage fluctuations

 Combinational logic is the main cause of glitches

Good synchronous design practices can help you meet your design goals consistently.

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Clock Skew

The shift register from the diagram does not work properly due to shifts in the clock path

(various delays - spread in the times of adding the edge to the flip-flops)

correct waveforms waveforms according to the times from the diagram

Clk

QA

QB

QC

Clk A, C

Clk B

QA

QB

QC

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Design guidelines

◼ Avoid combinational loops whenever possible

(feedback loops should include registers)

◼ A combinational loop also occurs when you feed back

the output of a register to an asynchronous pin of

the same register through combinational logic

◼ Avoid using latches to ensure that you can completely

analyze the timing performance and reliability of your

design (a common mistake in HDL code is unintended

latch inference)

◼ FPGA architecture is not optimized for latch

implementation and latches generally have slower

timing performance compared to equivalent registered

circuitry

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Design guidelines

◼ Use synchronous techniques to design pulse

◼ The pulse width is always equal to the clock period

◼ This pulse generator is predictable, can be verified

with timing analysis, and is easily moved to other devices

◼ Avoid using internally generated clocks (other than PLLs) wherever possible because they can cause

functional and timing problems in the design

◼ Clocks generated with combinational logic can introduce glitches that create functional problems

◼ Use global device-wide, low-skew dedicated routing for all internally-generated clocks, instead of routing

clocks on regular routing lines

◼ Always register the output of combinational logic before you use it as a clock signal

◼ Avoid ripple counters (cascaded registers can cause

problems because the counter creates a ripple clock at each stage)

◼ Use dedicated hardware to perform clock gating

rather than an AND or OR gate

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Internally generated clocks

◼ The use of a locally generated signal in the clock path introduces an additional edge shift

between clk1 and clk2 (q2 input)

◼ Not recommended

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Internally generated clocks

◼ No clock shift between flip-flops

◼ Controlled by the same clock signal

◼ Using the CE input (clock enable)

◼ Global clock path routing

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Unwanted pulses in the clock path

◼ Due to the manufacturing technology, modern FPGAs can respond even to very narrow pulses

(glitches) appearing on the clock input

◼ !Never force the clock input with a combination signal

(a technique known as "clock gating“)

0111 1111 1000 due to faster MSB

Shorter routing

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Unwanted pulses in the clock path

◼ Changing the control method increases the reliability of the system

◼ The function of the system is identical to that previously presented

◼ The difference is the use of the level-triggered ce (ENA) input and the use of a

common clock signal clk1

◼ A solution that is insensitive to glitches appearing at the gate output

◼ Note the change in the function of the control gate (not LSB)

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Glitches in the Set/Reset path

◼ Disturbances in the asynchronous set and reset signals can lead to incorrect operation of the device

◼ This phenomenon may be difficult to detect at the simulation stage (even post-route)

◼ In the diagram below, a problem may occur when switching between adjacent states

CLK

Q 7 8 9 A 0 1 2

CLR

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Glitches in the Set/Reset path

◼ The problem can be avoided by replacing asynchronous control with synchronous control

◼ This also involves changing the control function (negation to LSB)

CLK

Q 7 8 9 0 1 2

R

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Outline

◼ Good design practices

◼ Techniques for designing synchronous systems

◼ Construction of synchronization circuits

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Synchronization circuits

◼ How does the synchronization circuit work?

 It takes an asynchronous input signal and outputs it when the clock edge arrives

◼ What is the synchronization circuit used for?

 Prevents violations of the flip-flop set and hold time

 Increases the reliability of device operation

◼ Where should a synchronization circuit be used?

 When a signal passes between independent clock domains

 When collecting asynchronous signals from outside the integrated circuit

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

◼ Before an active clock edge, you must ensure that the data input

has been stable for at least the setup time of the register

◼ After an active clock edge, you must ensure that the data input

remains stable for at least the hold time of the register

◼ When you violate the setup or hold time of a register,

you might oscillate the output, or set the output

to an intermediate voltage level between the high

and low levels called a metastable state

Setup/hold time

Setup Hold

clk

D

Old value of D

New value of D

Metastable
P

o
ss

ib
le

b

eh
av

 o
n

 Q

clk

D Q

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Metastable state

◼ The output of the flip-flop enters a transient state

 It is neither a valid logical 0 nor a valid logical 1 (by some loads it may be interpreted as 0,

by others as 1)

 The output remains in this state for an unknown period of time before it reaches the correct

logical state (0 or 1)

 Small perturbations such as noise in power rails can cause the register to assume either

the high or low voltage level, resulting in an unpredictable valid state

◼ Due to the statistical nature of the phenomenon, the occurrence of a metastable state may be

reduced, not eliminated

◼ MTBF (Mean Time Between Failure) parameter is exponentially dependent on the length of

time the flip-flop has to exit from a potential metastable state

 A few extra ns of recovery time can significantly reduce the chances of a metastable event

The circuits shown next can achieve recovery times on the order of a full clock period

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Synchronization circuit 1

◼ Circuit used when asynchronous input signals last at least one system clock period (clk)

◼ The additional FF2 flip-flop allows for full recovery time (guards against metastability)

Synch_out
FF1 FF2

Asynch_in

clk

Guards against
metastability

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Synch_out
FF2 FF3

Asynch_in

clk

Guards against
metastability

D

FF1

CLR

Vcc

Synchronization circuit 2

◼ Circuit used when input pulses may be shorter than one system clock period (clk)

◼ Register D1 (with asynchronous clear) is used to capture short pulses

◼ The AND2B1 gate protects against deleting the contents of D1 as long

as the asynch_in pulse lasts

◼ The additional D3 flip-flop allows for full recovery time (guards against metastability)

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Bus synchronization circuit 1

◼ Circuit used for trigger signals lasting at least 1 CLK clock cycle

◼ Registering the data bus (reg:Busin) with an asynchronous signal

◼ Rising edge detection system composed of ff:d2-and2B1 elements

◼ Bus data synchronized to the system clock in the regE:Synch register

Synch_out
FF1 FF2

Asynch_in

clk

D
CE

D

Synch_reg

Bus_in

n

n

Bus_reg

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Bus synchronization circuit 2

◼ The system is used when trigger signals may last less than 1 CLK clock cycle

◼ Registering the data bus (reg:Busin) with an asynchronous signal

◼ Rising edge detection system composed of ff:d3-and2B1 elements

◼ Bus data synchronized to the system clock in the regE:Synch register

Synch_out
FF3 D

CE

D

Synch_reg

Bus_in

n

n

Bus_reg

FF2
Asynch_in

clk

D

FF1

CLR

Vcc

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Bus synchronization circuit 3

◼ A circuit used to synchronize data transfer between independent clock domains

◼ Use of FIFO memory with separated data writing and reading clocks

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Summary

◼ Proper use of a hierarchical structure in your design facilitates debugging and

module reuse (DFR)

◼ Synchronous projects are more reliable than asynchronous ones

◼ The use of global buffers and PLL circuits improves the timing and shape of the

clock signals

◼ Avoid short bursts (glitches) in the clock path, asynchronous set and reset signals

◼ Use a clock enable as an alternative to gating a clock

◼ The use of synchronizing circuits increases the reliability of the device

