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Digital Logic 

Design with FPGA
Synchronous circuits design
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Outline

◼ Good design practices

◼ Techniques for designing synchronous systems

◼ Construction of synchronization circuits
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Hierarchical structure of the project

◼ The use of hierarchy allows to increase the readability of the design

◼ Correct division into functional modules facilitates reuse and debugging

Example of division 

based on function type

State Machines
One-hot
Binary

Enumerated

Counters
Adders/Subtractors

Bit Shifters
Accumulators

Building Blocks
Standard Widths
Pipeline RAMs

Datapaths
Pipelining

Muxing/De-Muxing
Arithmetic

CoreGen
Parametizable functions

FIFOs
RAM

Technology-Specific Functions

Specific Functions

RAM
Other IP/Cores

Top Level of Design
Infer or instantiate I/O here

FIR Filters
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Design tips: Increase the readability of your design

◼ Create hierarchical blocks based on:

 Functional consistency within the block

 Minimal routing between blocks

◼ Use meaningful labels for blocks and the signals

◼ Separate independent clock domains

 Define clear relationships between clock signals

◼ Keep source file sizes reasonable

 Makes synthesis and debugging easier
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Design tips: Design for Reuse

◼ Define a set of core modules common to all projects

 Register banks

 FIFO memories

 Other standard features

◼ Name library elements based on their functions and implementation 

technique

 Makes it easier to find the item you want

 Example: REG_16X8_M10 (bank of 16 8-bit registers dedicated to the MAX10 platform)

◼ Store defined libraries/packages/blocks in a directory independent of the 

EDA tools you use

 Makes sharing easier

 Protects against damage/destruction, e.g. when updating tools
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Outline

◼ Good design practices

◼ Techniques for designing synchronous systems

◼ Construction of synchronization circuits
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Why synchronous devices?

◼ Synchronous systems are more reliable

 Events are analyzed only on clock edges that occur at precisely defined time intervals

 The outputs from one level of logic have the entire clock period to propagate to the input of the next level

 Offsets between the times of successive data arrival are allowed within the same clock period

◼ The problem of asynchronous devices

 Delays with a specific value (e.g. 3.5ns) – more difficult to implement, may have a large spread (different 

system parameters)

 Many signals may require specific timing (e.g. 4ns stable data before the selection signal appears, etc.)

 Relying on propagation delays can result in possible glitches and spikes, because propagation delay 

varies with temperature and voltage fluctuations

 Combinational logic is the main cause of glitches

Good synchronous design practices can help you meet your design goals consistently.
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Clock Skew

The shift register from the diagram does not work properly due to shifts in the clock path 

(various delays - spread in the times of adding the edge to the flip-flops)

correct waveforms waveforms according to the times from the diagram

Clk

QA

QB

QC

Clk A, C

Clk B

QA

QB

QC
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Design guidelines

◼ Avoid combinational loops whenever possible 

(feedback loops should include registers)

◼ A combinational loop also occurs when you feed back 

the output of a register to an asynchronous pin of 

the same register through combinational logic

◼ Avoid using latches to ensure that you can completely 

analyze the timing performance and reliability of your 

design (a common mistake in HDL code is unintended 

latch inference)

◼ FPGA architecture is not optimized for latch 

implementation and latches generally have slower 

timing performance compared to equivalent registered 

circuitry
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Design guidelines

◼ Use synchronous techniques to design pulse 

◼ The pulse width is always equal to the clock period

◼ This pulse generator is predictable, can be verified 

with timing analysis, and is easily moved to other devices

◼ Avoid using internally generated clocks (other than PLLs) wherever possible because they can cause 

functional and timing problems in the design

◼ Clocks generated with combinational logic can introduce glitches that create functional problems

◼ Use global device-wide, low-skew dedicated routing for all internally-generated clocks, instead of routing 

clocks on regular routing lines

◼ Always register the output of combinational logic before you use it as a clock signal

◼ Avoid ripple counters (cascaded registers can cause 

problems because the counter creates a ripple clock at each stage)

◼ Use dedicated hardware to perform clock gating

rather than an AND or OR gate
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Internally generated clocks

◼ The use of a locally generated signal in the clock path introduces an additional edge shift 

between clk1 and clk2 (q2 input)

◼ Not recommended
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Internally generated clocks

◼ No clock shift between flip-flops

◼ Controlled by the same clock signal

◼ Using the CE input (clock enable)

◼ Global clock path routing
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Unwanted pulses in the clock path

◼ Due to the manufacturing technology, modern FPGAs can respond even to very narrow pulses 

(glitches) appearing on the clock input

◼ !Never force the clock input with a combination signal 

(a technique known as "clock gating“)

0111 1111 1000 due to faster MSB

Shorter routing
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Unwanted pulses in the clock path

◼ Changing the control method increases the reliability of the system

◼ The function of the system is identical to that previously presented

◼ The difference is the use of the level-triggered ce (ENA) input and the use of a 

common clock signal clk1

◼ A solution that is insensitive to glitches appearing at the gate output

◼ Note the change in the function of the control gate (not LSB)
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Glitches in the Set/Reset path

◼ Disturbances in the asynchronous set and reset signals can lead to incorrect operation of the device

◼ This phenomenon may be difficult to detect at the simulation stage (even post-route)

◼ In the diagram below, a problem may occur when switching between adjacent states

CLK

Q        7          8      9       A   0       1          2

CLR
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Glitches in the Set/Reset path

◼ The problem can be avoided by replacing asynchronous control with synchronous control

◼ This also involves changing the control function (negation to LSB)

CLK

Q        7          8      9  0          1          2

R
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Outline

◼ Good design practices

◼ Techniques for designing synchronous systems

◼ Construction of synchronization circuits
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Synchronization circuits

◼ How does the synchronization circuit work?

 It takes an asynchronous input signal and outputs it when the clock edge arrives

◼ What is the synchronization circuit used for?

 Prevents violations of the flip-flop set and hold time

 Increases the reliability of device operation

◼ Where should a synchronization circuit be used?

 When a signal passes between independent clock domains

 When collecting asynchronous signals from outside the integrated circuit
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◼ Before an active clock edge, you must ensure that the data input 

has been stable for at least the setup time of the register

◼ After an active clock edge, you must ensure that the data input 

remains stable for at least the hold time of the register

◼ When you violate the setup or hold time of a register, 

you might oscillate the output, or set the output 

to an intermediate voltage level between the high 

and low levels called a metastable state

Setup/hold time

Setup  Hold 

clk

D

Old value of D

New value of D

Metastable 
P

o
ss

ib
le

 
b

eh
av

 o
n

 Q

clk

D Q
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Metastable state

◼ The output of the flip-flop enters a transient state

 It is neither a valid logical 0 nor a valid logical 1 (by some loads it may be interpreted as 0, 

by others as 1)

 The output remains in this state for an unknown period of time before it reaches the correct 

logical state (0 or 1)

 Small perturbations such as noise in power rails can cause the register to assume either 

the high or low voltage level, resulting in an unpredictable valid state

◼ Due to the statistical nature of the phenomenon, the occurrence of a metastable state may be 

reduced, not eliminated

◼ MTBF (Mean Time Between Failure) parameter is exponentially dependent on the length of 

time the flip-flop has to exit from a potential metastable state

 A few extra ns of recovery time can significantly reduce the chances of a metastable event

The circuits shown next can achieve recovery times on the order of a full clock period
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Synchronization circuit 1

◼ Circuit used when asynchronous input signals last at least one system clock period (clk)

◼ The additional FF2 flip-flop allows for full recovery time (guards against metastability)

Synch_out
FF1 FF2

Asynch_in

clk

Guards against 
metastability
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Synch_out
FF2 FF3

Asynch_in

clk

Guards against 
metastability

D

FF1

CLR

Vcc

Synchronization circuit 2

◼ Circuit used when input pulses may be shorter than one system clock period (clk)

◼ Register D1 (with asynchronous clear) is used to capture short pulses

◼ The AND2B1 gate protects against deleting the contents of D1 as long 

as the asynch_in pulse lasts

◼ The additional D3 flip-flop allows for full recovery time (guards against metastability)
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Bus synchronization circuit 1

◼ Circuit used for trigger signals lasting at least 1 CLK clock cycle

◼ Registering the data bus (reg:Busin) with an asynchronous signal

◼ Rising edge detection system composed of ff:d2-and2B1 elements

◼ Bus data synchronized to the system clock in the regE:Synch register

Synch_out
FF1 FF2

Asynch_in

clk

D
CE

D

Synch_reg

Bus_in

n

n

Bus_reg
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Bus synchronization circuit 2

◼ The system is used when trigger signals may last less than 1 CLK clock cycle

◼ Registering the data bus (reg:Busin) with an asynchronous signal

◼ Rising edge detection system composed of ff:d3-and2B1 elements

◼ Bus data synchronized to the system clock in the regE:Synch register

Synch_out
FF3 D

CE

D

Synch_reg

Bus_in

n

n

Bus_reg

FF2
Asynch_in

clk

D

FF1

CLR

Vcc
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Bus synchronization circuit 3

◼ A circuit used to synchronize data transfer between independent clock domains

◼ Use of FIFO memory with separated data writing and reading clocks
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Summary

◼ Proper use of a hierarchical structure in your design facilitates debugging and 

module reuse (DFR)

◼ Synchronous projects are more reliable than asynchronous ones

◼ The use of global buffers and PLL circuits improves the timing and shape of the 

clock signals

◼ Avoid short bursts (glitches) in the clock path, asynchronous set and reset signals

◼ Use a clock enable as an alternative to gating a clock

◼ The use of synchronizing circuits increases the reliability of the device


