
11010100010101001001000101101010101001001001

00111101000100101010110101010111000101000101

00100011100111010000001111001000101010010010

00001010010100101001001001000100010001000010

00111101010001010100100100010110101010100100

10010011110100010010101011010101011100010100

01010010001110011101000000111100100010101001

00100000101001010010100100100100010001000100

00100011110101000101010010010001011010101010

01001001001111010001001010101101010101110001

01000101001000111001110100000011110010001010

10010010000010100101001010010010010001000100

01000010001111010100010101001001000101101010

10100100100100111101000100101010110101010111

00010100010100100011100111010000001111001000

10101001001000001010010100101001001001001111

01000100101010110101010111000101000101001000

11100111010000001111001000101010010010000010

10010100101001001001000100010001000010001111

01010001010100100100010110101010100100100100

11110100010010101011010101011100010100010100

10001110011101000000111100100010101001001000

00101001000111001110100000011110010001010100

10010000010100101001010010010010001000100010

00010001111010100010101001001000101101010101

00100100100111101000100101010110101010111000

10100010100100011100111010000001111001000101

01001001000001010010100101001001001000100010

00100001000111101010001010100100100010110101

01010010010010011110100010010101011010101011

10001010001010010001110011101000000111100100

01010100100100000101001010010100100100100010

00100010000100011110101000101010010010001011

01010101001001001001111010001001010101101010

10111000101000101001000111001110100000011110

01000101010010010000010100101001010010010010

01111010001001010101101010101110001010001010

01000111001110100000011110010001010100100100

00010100101001010010010010001000100010000100

01111010100010101001001000101101010101001001

00100111101000100101010110101010111000101000

10100100011100111010000001111001000101010010

01000001010010001110011101000000111100100010

10100100100000101001010010100100100100010001

00010000100011110101000101010010010001011010

10101001001001001111010001001010101101010101

11000101000101001000111001110100000011110010

00101010010010000010100101001010010010010001

00010001000010001111010100010101001001000101

Digital Logic

Design with FPGA
FPGA Design Optimization

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Outline

◼ Registers Duplication

◼ Pipelining

◼ IO Registers

◼ Retiming

◼ Design Guidelines

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

◼ Highly loaded (fanout) networks are slow

and difficult to route

◼ Registers duplication can fix both of these

problems

 Reducing fanout will reduce network

delays

 Duplicating functions will reduce the

density of connections in a given area

of the chip

◼ Increasing performance at the expense of

increasing resources used

Registers Duplication

Function F1

reg1

Function F1

reg2

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Registers Duplication

The source circuit controls two banks of registers

embedded in different regions of the chip

◼ Condition: The source flip-flop is not tightly

bound to the current location

◼ Timing requirement for clock period

(PERIOD = 6 ns)

◼ After implementation with default settings,

the longest path was obtained = 7.4 ns

(exceeds the desired clock period)

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Registers Duplication

Project status after duplication of the register

and control function

◼ Each flip-flop controls a different region of

the system

 This allows the FF to be located

closer to the controlled object

 We get shorter routing lines (and with

lower capacity)

◼ After implementation, the longest path was

obtained = 5.4 ns (the system meets the

time requirements)

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Outline

◼ Registers Duplication

◼ Pipelining

◼ IO Registers

◼ Retiming

◼ Design Guidelines

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Pipelining

◼ Introducing additional registers in the data path increases processing efficiency

fmax = k [MHz]

Two logic levels

Reducing the number of logic levels

(LUTs) between adjacent registers

fmax 2*k [MHz]

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Latency in pipeline processing

◼ Each stage of registers in the pipeline introduces

an additional clock cycle delay before the first

valid data appears at the device output

◼ This is a "flow-filling" phenomenon. Once filled,

the correct data appears at the output on each

subsequent clock cycle.

◼ Processing latency (pipeline latency) is equal to

the number of clock cycles (number of pipeline

stages). It is sometimes referred to as "stream

depth".

u 0 1 2 3 4

u u 0 n 2n 3n

u u u k n+k 2n+k

clk

Data

Stage1

Result

First input
Pipeline is
filling up

First valid
output

New result
on every

clock edge

Result = (n*Data) + k

k - constant

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Pipeline guidelines

◼ Is there multi-level logic between adjacent registers?

◼ Does the designed system tolerate delays (latency)?

◼ Are the resources of the designed system sufficient to implement pipelines?

 Are there enough free flip-flops/connections to support many additional stages

of the pipeline?

 This is a problem that rarely occurs in FPGA systems due to their

construction…

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Case 1

◼ The diagrams show two systems:

the original one and the one with introduced pipeline registers.

◼ After introducing pipeline processing, the system gives incorrect results.

◼ Why? How can I fix it?

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Case 1

◼ The delay in each path between the input and output of the circuit must be equal

◼ Failure to follow this rule leads to processing errors (mixing samples from different times)

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Case 2

◼ The diagrams show two systems:

the original one and the one with introduced pipeline registers.

◼ After introducing pipeline processing, the system gives incorrect results.

◼ Why? How can I fix it?

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Case 2

◼ The main problem is the incorrect introduction of pipelines

◼ Input data is transferred to the output with a different delay (latency mismatch)

◼ Delay on lines A,B,C,D = 1, delay on Selection line = 0, this mixes new data with data

from the previous processing cycle

◼ This is a common mistake designers make.

Pipeline registers must be entered in both the data path and the control path.

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Outline

◼ Registers Duplication

◼ Pipelining

◼ IO Registers

◼ Retiming

◼ Design Guidelines

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

I/O elements (IOEs)

◼ MAX 10 I/O elements (IOEs) contain a

bidirectional I/O buffer and five registers for

registering input, output, output-enable

signals

◼ Transfer mode: bidirectional single data

rate (SDR) and double data rate (DDR)

◼ All I/O block flip-flops have guaranteed

setup time and hold time

(and clock-to-out times if the clock signal

is passed through the global clock buffer)

source: Intel® MAX® 10 General Purpose I/O User Guide, https://www.intel.com/content/www/us/en/docs/programmable/683751/22-1/i-o-overview.html

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Access to I/O registers

◼ During synthesis
 Timing-driven synthesis can force the boundary flip-flops to be moved to I/O elements

◼ During fitting (implementation phase)
 ‘Optimize IOC Register Placement for Timing’ 'Normal' option is enabled by default:

the Fitter will opportunistically pack registers into I/Os that should improve I/O timing

◼ The location of the I/O registers is checked in the report after Fitting (Partition Statistics).
 ‘Total registers' section

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Case 3

◼ Registering input and output signals increases the depth of the pipeline

◼ Moving the edge registers to the I/O blocks allows for shortening the delay times

at the inputs of the integrated circuit

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Outline

◼ Registers Duplication

◼ Pipelining

◼ IO Registers

◼ Retiming

◼ Design Guidelines

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

◼ A technique of moving registers to improve timing efficiency

◼ Synthesis tools can shift the register to balance the delay of the combinational path seen from its

input and output

◼ In some tools, a technique called 'Register Balancing'

◼ It can reduce or increase the number of registers used in the project (retiming can create multiple

registers at the input of a combinational block from a register at the output of a combinational block)

Retiming

D

FF

D

FF

D

FF

D

FF

D

FF

D

FF

t1 t2

t1 ~ t2

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Outline

◼ Registers Duplication

◼ Pipelining

◼ IO Registers

◼ Retiming

◼ Design Guidelines

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

◼ Use pipeline processing

increases the bandwidth

◼ Use synchronous control signals

increases reliability

◼ Use inference in resource placement

 Multiplexers

 Shift registers

 Memories (block and distributed)

 DSP blocks

 …

resource optimization / Design for Reuse

Design Guidelines

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Instantiation vs. Inference

◼ Allow synthesis tools to infer FPGA resources wherever possible

 Code written this way becomes more portable (DFR)

◼ In some cases, the synthesis tool cannot 'infer' or incorrectly infers resources

 In such situations, you must explicitly instantiate the desired component

◼ Many design tools offer ready-made components (IP-cores) that must be
instantiate in the project

 Available as a netlist and embedding pattern of the generated component in
various HDL languages

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Design guidelines: HDL description

◼ Avoid high-level syntax

 Results from synthesis tools may be suboptimal

◼ Avoid repeatedly entering if-then-else structures

 Most tools implement them in parallel

 Executing if-then-else multiple times can lead to the creation of priority encoders

◼ Use the case structure to build decoders and finite state machines

 Better results than if-then-else

◼ Order and group arithmetic/logic operations

 A <= B + C + D + E; should be: A <= (B + C) + (D + E)

◼ Avoid entering unwanted latches

 Specify the value of all outputs in all possible branches
(e.g. by substituting default values before if-then-else and case)

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Design tips: synthesis

◼ Use time restrictions

 Define strict (but realistic!) limits on the clock signal

 Place independent clock signals in different groups

◼ Use the appropriate synthesis tool options

 Disable resource sharing

 Move boundry registers closer to logic (or introduce additional I/O registers)

 Enable FSM optimization

 Use time path balancing (retiming)

D
ig

it
a

l
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

Summary

◼ Performance-boosting techniques:

 Duplication of registers

 Adding pipeline stages

 Use of input/output registers

 Balancing delays

◼ Side effects:

 Register duplication increases the device size

 Piping introduces processing latency and increases resource consumption

 Retiming changes the number of registers used in the design

