
•1101010001010100100100010110101010100100100

10011110100010010101011010101011100010100010

10010001110011101000000111100100010101001001

00000101001010010100100100100010001000100001

00011110101000101010010010001011010101010010

01001001111010001001010101101010101110001010

00101001000111001110100000011110010001010100

10010000010100101001010010010010001000100010

00010001111010100010101001001000101101010101

00100100100111101000100101010110101010111000

10100010100100011100111010000001111001000101

01001001000001010010100101001001001000100010

00100001000111101010001010100100100010110101

01010010010010011110100010010101011010101011

10001010001010010001110011101000000111100100

01010100100100000101001010010100100100100111

10100010010101011010101011100010100010100100

01110011101000000111100100010101001001000001

01001010010100100100100010001000100001000111

10101000101010010010001011010101010010010010

01111010001001010101101010101110001010001010

01000111001110100000011110010001010100100100

00010100100011100111010000001111001000101010

01001000001010010100101001001001000100010001

00001000111101010001010100100100010110101010

10010010010011110100010010101011010101011100

01010001010010001110011101000000111100100010

10100100100000101001010010100100100100010001

00010000100011110101000101010010010001011010

10101001001001001111010001001010101101010101

11000101000101001000111001110100000011110010

00101010010010000010100101001010010010010001

00010001000010001111010100010101001001000101

10101010100100100100111101000100101010110101

01011100010100010100100011100111010000001111

00100010101001001000001010010100101001001001

00111101000100101010110101010111000101000101

00100011100111010000001111001000101010010010

00001010010100101001001001000100010001000010

00111101010001010100100100010110101010100100

10010011110100010010101011010101011100010100

01010010001110011101000000111100100010101001

00100000101001000111001110100000011110010001

01010010010000010100101001010010010010001000

10001000010001111010100010101001001000101101

01010100100100100111101000100101010110101010

11100010100010100100011100111010000001111001

00010101001001000001010010100101001001001000

10001000100001000111101010001010100100100010

Digital Logic 

Design with FPGA
Design Flow with Quartus

Foundations



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Outline

◼ Modeling digital systems

◼ Typical design flow with HDL

◼ Intel PLD design flow

◼ Quartus Prime software

 Project flow

 Design entry

 Compilation tools

 Verification of results



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Digital system vs. Digital device

◼ Digital circuit… 

equipment that performs functions using an appropriate structure of electronic components

◼ Digital system ... 

a set of digital circuits, contains at least one programmable processor, performs a significant 

part of its functions by means of software executed by this processor



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Embedded system

An embedded system is a microprocessor system built into any technical device, performing specific

control, measurement, signal processing functions, etc.,

◼ Basic elements of an embedded system:

 Microcontroller / microprocessor

 Application-specific hardware (ASIC/FPGA)

 Application software

 Real-time operating system (RTOS)

◼ New design considerations:

 system level design,

 co-creation of hardware and software (H/S Codesign)



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Evolution of ASIC to SoC/SoPC

Technological possibilities allow you to fit in one integrated circuit:

 processor (several processors, e.g. signal processor, microcontroller, many cores with different

parameters)

 memory (ROM & SRAM, in specific processes Flash memory, "e"-DRAM)

 standard communication blocks (e.g. I2C or USB controller)

 application-specific logic subcircuits (ASSP)

 mixed and analog circuits (e.g. ADC and DAC converters)

 mechanical microsystems (e.g. MEMS sensors)

Programmable devices also now contain logical resources enabling the implementation of systems

in a single package (including embedded processors) -> SoPC, PSoC, APSoC



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Modeling Digital Systems

◼ Simulation and modeling at the system level
 performance analysis

◼ Behavior specification at the algorithmic level
 preliminary functional verification of algorithms

 division into hardware and software

 high-level synthesis

◼ Simulation behavioral models of standard elements

◼ Functional simulations at the system/package level
 full

 bus

◼ Synthesizable models at the RTL (register transfer level)
 full functional specification of the project

◼ Model of the system environment (testbench)

◼ Simulation models of library cells from integrated circuit manufacturers (VITAL standard) –
 time verification of ASIC/FPGA systems



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 

Gate-level

Model

T
e

s
t

 
b

e
n

c
h

Timing

Model

Simulate

Synthesize

Simulate

Place & Route

Simulate

Project

Requirements

Hardware

Platform

Behavioral

Model

Typical design flow with HDL



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Design stages

◼ Specification / design entry

◼ Synthesis

 implementation of functions based on component (library) elements

 optimization (e.g. logical minimization)

 generation (physical implementation of the structure)

◼ Analysis

 simulation – validation, regression tests

 formal verification (equivalence of two representations)

 verification of design rules

◼ Implementation

 from SSI / MSI / LSI / VLSI catalog items (memory / ASSP)

 programmable systems (FPGA / CPLD)

 specialized systems (ASIC)

 embedded systems (traditional and integrated - SoC)



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Intel PLD Design Flow

T
e

s
tb

e
n
c
h
 

Design specification

Hardware

Platform

Design entry
Schematic/RTL/Platform Designer

Synthesis (Mapping)
Result: Post-synthesis netlist

Place & route (Fitting)
Result: Post-fit netlist

RTL simulation
Functional simulation

Verify logic model & data flow

Gate-level simulation
Simulation with timing delays

Verify design will work in target

Timing analysis
Static timing analysis

Verify performance specification met

Board verification & test
Program & test device on board
Use on-chip tools for debugging



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Intel Quartus Prime

◼ Fully-integrated development tool

 Multiple design entry methods

 Logic synthesis

 Place & route

 Device programming

◼ Simulation

 Supports standard HDL simulation tools

 Includes ModelSim(Questa)-Intel FPGA Starter Edition tool

 Optional upgrade to ModelSim(Questa)-Intel FPGA Edition tool

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Quartus Prime Software

◼ Lite Edition (LE)

 Supported families: 

Cyclone V, IV 

MAX 10, V, II

 No license file required

◼ Standard Edition (SE)

 Supported families: 

Stratix V, IV

Arria 10, V, II

Cyclone V, IV

MAX 10, V, II

 License file required

◼ Pro Edition (PE)

 Supported families: 

Stratix 10

Arria 10

 License file required

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Quartus Prime GUI

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

Project 

Navigator

Task window

Tool View 

window

Messages 

window

IP Catalog



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Quartus Prime Help System

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 

◼ Enter and execute Tcl commands directly in the GUI

View menu –> Utility Windows -> Tcl Console

◼ Execute from command-line using Tcl shell

 quartus_sh -s

Tcl Console

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

C:\<install dir>\quartus\bin64\quartus_sh --qhelp



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Quartus Prime Design Software

◼ Quartus project 

 Collection of related design files & libraries

 Must have a designated top-level entity

 Target a single device

 Store settings in settings file (.qsf)

 Compiled netlist information stored in qdb folder in project directory

◼ Create new projects with New Project Wizard

◼ Can be created using Tcl scripts
Tcl: roject_new <project_name>

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Add Files in Project

◼ Add design files

 VHDL

 Verilog

 SystemVerilog

 EDIF

 VQM

 Intel® Quartus® Prime software IP

 Platform Designer

◼ Add library paths

 User libraries

 Intel® FPGA Intellectual Property (IP) library

 Pre-compiled VHDL packages

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

Tcl: set_global_assignment –name VHDL_FILE <filename.vhd>

Tcl: set_global_assignment –name USER_LIBRARIES <library_path_name>



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Device & Family Selection

◼ Choose device family & family category

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

Tcl: set_global_assignment –name FAMILY “device family name”

Tcl: set_global_assignment –name DEVICE <part_number>



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Opening a Project

◼ From File menu

◼ From Recent Project

◼ Double-click .qpf file

◼ Tcl script

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

Tcl: project_open <project_name>



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Quartus Prime Project Files

◼ Project File (.qpf)

 Intel Quartus Prime software version

 Time stamp

 Active revision(s)

◼ Defaults File (.qdf)

 Stores project setting & assignment defaults for new project revisions

 <revision_name>_assignment_defaults.qdf

◼ Settings File (.qsf)

 Stores all settings & assignments except timing

 Uses Tcl syntax

 Can be edited manually by user

◼ Synopsys Design Constraints (.sdc)

 Contains timing constraints

◼ qdb folder

 Contains compiled design information

◼ output_files folder (customize location/name in project settings)

 Generated compilation report files

 Programming files generated by the Assembler

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Constraint Files & Assignment Priority

◼ Settings File (.qsf)

 Highest priority

 Assignments always used from here first

◼ Revision-specific .qdf file located in project directory

 <revision_name>_assignment_defaults.qdf

 Created automatically in the project directory when a revision is opened 

in another version of Quartus Prime software

◼ .qdf located in project directory

 assignment_defaults.qdf

 Created automatically in project directory when project archived & restored

◼ .qdf located in Intel Quartus Prime Design Software bin64 directory

 Lowest priority

 Assignments only used if not found in higher priority files

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Project Archive & Restore

◼ Archive Creates 2 files

 Compressed Quartus Prime Design Software Archive File (.qar)

◼ Includes design files, .qpf file, & .qsf file(s)

◼ Option to include databases

◼ Creates local .qdf file for archive

 Archive activity log (.qarlog)

◼ Restore decompresses .qar into specified directory

◼ Paths/directory structures to referenced files/libraries outside project directory must also be restored

 Recreated in restore location based on nearest common parent directory

 Example of referenced file paths in restored project destination:

◼ <destination folder>/drive/C/<entire path to all files in project directory>

◼ <destination folder>/drive/H/<path to file(s) referenced on original H drive>

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

Tcl: project_archive <project_name>

Tcl: project_restore <archive_file>



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Design entry methods

◼ Quartus Prime design entry

 Text editor

◼ VHDL

◼ Verilog or SystemVerilog

 Schematic editor

◼ Block Diagram File

 System editor

◼ Platform Designer

 State machine editor

◼ HDL from state machine file

 Memory editor

◼ HEX

◼ MIF

◼ 3rd-party EDA tools

 EDIF 2 0 0

 Verilog software Mapping (.vqm)

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Schematic Editor

◼ Full-featured schematic design capability

◼ Schematic Editor uses

 Create simple test designs to understand the functionality of an Intel FPGA IP: 

PLL, LVDS I/O, memory, etc…

 Create top-level schematic for easy viewing & connection

 Convert between schematic .bdf, block symbol .bsf, and HDL files

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
State Machine Editor

◼ Create state machines in GUI

 Manually by adding individual states,

transitions, and output actions

 Automatically with State Machine Wizard

(Tools menu & toolbar)

◼ Generate state machine HDL code

 VHDL, Verilog, SystemVerilog

 Automatically added to project

 Required for use

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

from .smf

to HDL



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Intel MAX10 Design Flow

source: https://www.intel.com/content/www/us/en/docs/programmable/683196/current/fpga-design-guidelines-34288.html



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 

Synthesis

◼ Translates HDL source files into an atom netlist

◼ Generates an advanced hierarchical database

Design compilation

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

Analysis &
Elaboration

Synthesis

Fitter

Assembler

Timing Analysis

EDA Netlist Writer

Finctional/RTL 
Simulation

Constrains & 
settings

Design
Files

Gate-level
Simulation

Finctional netlist

Programming & 
configuration files

Post-fit 
simulation files

Analysis &
Elaboration

Synthesis

Logic 
cells

netlist

Verilog
(.v .sv)

Schematic

(.bdf)
VHDL
(.vhd)

AHDL
(.tdf)

3rd party
(.vqm)

DFFs

I/O ports

RAM

DSP

Wires/Nets



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Design compilation - Fitter

◼ Advanced place & route engine for finding a valid “solution” 

in a “reasonable” amount of time

◼ Consists of 4 stages

 Plan

◼ Periphery (I/O) placement and routing, clock resource

selection

 Early Place

◼ Early assignment of core logic to device resources

◼ More pessimistic results within 20% of final routed

results

 Place

◼ Core resource placement (logic elements, registers, 

DSP, RAM)

 Route

◼ Core routing connections made

 Finalize

◼ Post-routing optimizations

◼ Stages can be all run or individually

 End of running each stage referred to as a checkpoint (CP)

◼ Prior stages must be complete before running later stages

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

Plan

Finalyze

Post-fit 
netlist

Post-synth 
netlist

Post-plan CP

Early Place

Place

Route

Post-early plan CP

Post-place CP

Post-route CP



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Compilation Results

◼ Quartus Prime Design Software graphical tools available for

 Understanding design processing

 Verifying correct design results

 Debugging incorrect results

◼ Compilation Report

◼ Viewers

 RTL Viewer

 Technology Map Viewer

 State Machine Viewer

◼ Chip Planner

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Compilation Results

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

◼ Compilation Report: contains all compilation processing information

 Resource usage

 Device pin-out

 Settings and constraints applied

 Messages

◼ Recommendation: Go through report for a design 

to get sense of information being provided

◼ Information also available as text files 

in output_files folder in project directory: 

<revision_name>.syn.rpt, <revision_name>.fit.rpt, 
<revision_name>.fit.plan.rpt, etc.

◼ Access from Processing menu, toolbar, 

or Compilation Dashboard

◼ Each compiler process generates separate folder

Compilation Report GUI



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Example: Compilation Results - Resources

◼ Synthesis resource usage: estimates of FPGA resources required to implement design

◼ Fitter resource usage: detailed information on all resources used by design for each stage

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Netlist Viewers

◼ RTL Viewer

 Schematic of design after Analysis & Elaboration

 Visually check initial HDL before synthesis optimizations

 Locate synthesized nodes for assigning constraints

 Debug verification issues

◼ Technology Map Viewers (Post-Mapping or Post-Fitting)

 Graphically represents results of mapping (post-synthesis) & fitting

 Analyze critical timing paths graphically

 Locate nodes & node names after optimizations (cross-probing)

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Netlist Viewers

◼ RTL Viewer - represents design using logic blocks & nets

 I/O pins

 Registers

 Muxes

 Gates (AND, OR, etc.)

 Operators 

(adders, multipliers, etc.)

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Netlist Viewers

◼ Technology Map Viewers - represents design using atoms

 I/O pins & cells

 Logic cells (Lcells)

 Memory blocks

 MAC (DSP blocks)

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
State Machine Viewer

◼ Tools menu → Netlist Viewers

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

Highlighting state in state transition table 

highlights corresponding state in state flow diagram

State Flow 

Diagram

Use drop-down to select from

multiple state machines 

View transitions 

and encoding


