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Outline

◼ Modeling digital systems

◼ Typical design flow with HDL

◼ Intel PLD design flow

◼ Quartus Prime software

 Project flow

 Design entry

 Compilation tools

 Verification of results
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Digital system vs. Digital device

◼ Digital circuit… 

equipment that performs functions using an appropriate structure of electronic components

◼ Digital system ... 

a set of digital circuits, contains at least one programmable processor, performs a significant 

part of its functions by means of software executed by this processor
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Embedded system

An embedded system is a microprocessor system built into any technical device, performing specific

control, measurement, signal processing functions, etc.,

◼ Basic elements of an embedded system:

 Microcontroller / microprocessor

 Application-specific hardware (ASIC/FPGA)

 Application software

 Real-time operating system (RTOS)

◼ New design considerations:

 system level design,

 co-creation of hardware and software (H/S Codesign)
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Evolution of ASIC to SoC/SoPC

Technological possibilities allow you to fit in one integrated circuit:

 processor (several processors, e.g. signal processor, microcontroller, many cores with different

parameters)

 memory (ROM & SRAM, in specific processes Flash memory, "e"-DRAM)

 standard communication blocks (e.g. I2C or USB controller)

 application-specific logic subcircuits (ASSP)

 mixed and analog circuits (e.g. ADC and DAC converters)

 mechanical microsystems (e.g. MEMS sensors)

Programmable devices also now contain logical resources enabling the implementation of systems

in a single package (including embedded processors) -> SoPC, PSoC, APSoC
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Modeling Digital Systems

◼ Simulation and modeling at the system level
 performance analysis

◼ Behavior specification at the algorithmic level
 preliminary functional verification of algorithms

 division into hardware and software

 high-level synthesis

◼ Simulation behavioral models of standard elements

◼ Functional simulations at the system/package level
 full

 bus

◼ Synthesizable models at the RTL (register transfer level)
 full functional specification of the project

◼ Model of the system environment (testbench)

◼ Simulation models of library cells from integrated circuit manufacturers (VITAL standard) –
 time verification of ASIC/FPGA systems
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Gate-level

Model
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Timing

Model

Simulate

Synthesize

Simulate

Place & Route

Simulate

Project

Requirements

Hardware

Platform

Behavioral

Model

Typical design flow with HDL
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Design stages

◼ Specification / design entry

◼ Synthesis

 implementation of functions based on component (library) elements

 optimization (e.g. logical minimization)

 generation (physical implementation of the structure)

◼ Analysis

 simulation – validation, regression tests

 formal verification (equivalence of two representations)

 verification of design rules

◼ Implementation

 from SSI / MSI / LSI / VLSI catalog items (memory / ASSP)

 programmable systems (FPGA / CPLD)

 specialized systems (ASIC)

 embedded systems (traditional and integrated - SoC)
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Intel PLD Design Flow
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Design specification

Hardware

Platform

Design entry
Schematic/RTL/Platform Designer

Synthesis (Mapping)
Result: Post-synthesis netlist

Place & route (Fitting)
Result: Post-fit netlist

RTL simulation
Functional simulation

Verify logic model & data flow

Gate-level simulation
Simulation with timing delays

Verify design will work in target

Timing analysis
Static timing analysis

Verify performance specification met

Board verification & test
Program & test device on board
Use on-chip tools for debugging
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Intel Quartus Prime

◼ Fully-integrated development tool

 Multiple design entry methods

 Logic synthesis

 Place & route

 Device programming

◼ Simulation

 Supports standard HDL simulation tools

 Includes ModelSim(Questa)-Intel FPGA Starter Edition tool

 Optional upgrade to ModelSim(Questa)-Intel FPGA Edition tool

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Quartus Prime Software

◼ Lite Edition (LE)

 Supported families: 

Cyclone V, IV 

MAX 10, V, II

 No license file required

◼ Standard Edition (SE)

 Supported families: 

Stratix V, IV

Arria 10, V, II

Cyclone V, IV

MAX 10, V, II

 License file required

◼ Pro Edition (PE)

 Supported families: 

Stratix 10

Arria 10

 License file required

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html
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Quartus Prime GUI

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

Project 

Navigator

Task window

Tool View 

window

Messages 

window

IP Catalog
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Quartus Prime Help System

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html
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◼ Enter and execute Tcl commands directly in the GUI

View menu –> Utility Windows -> Tcl Console

◼ Execute from command-line using Tcl shell

 quartus_sh -s

Tcl Console

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

C:\<install dir>\quartus\bin64\quartus_sh --qhelp
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Quartus Prime Design Software

◼ Quartus project 

 Collection of related design files & libraries

 Must have a designated top-level entity

 Target a single device

 Store settings in settings file (.qsf)

 Compiled netlist information stored in qdb folder in project directory

◼ Create new projects with New Project Wizard

◼ Can be created using Tcl scripts
Tcl: roject_new <project_name>

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html
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Add Files in Project

◼ Add design files

 VHDL

 Verilog

 SystemVerilog

 EDIF

 VQM

 Intel® Quartus® Prime software IP

 Platform Designer

◼ Add library paths

 User libraries

 Intel® FPGA Intellectual Property (IP) library

 Pre-compiled VHDL packages

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

Tcl: set_global_assignment –name VHDL_FILE <filename.vhd>

Tcl: set_global_assignment –name USER_LIBRARIES <library_path_name>
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Device & Family Selection

◼ Choose device family & family category

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

Tcl: set_global_assignment –name FAMILY “device family name”

Tcl: set_global_assignment –name DEVICE <part_number>
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Opening a Project

◼ From File menu

◼ From Recent Project

◼ Double-click .qpf file

◼ Tcl script

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

Tcl: project_open <project_name>
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Quartus Prime Project Files

◼ Project File (.qpf)

 Intel Quartus Prime software version

 Time stamp

 Active revision(s)

◼ Defaults File (.qdf)

 Stores project setting & assignment defaults for new project revisions

 <revision_name>_assignment_defaults.qdf

◼ Settings File (.qsf)

 Stores all settings & assignments except timing

 Uses Tcl syntax

 Can be edited manually by user

◼ Synopsys Design Constraints (.sdc)

 Contains timing constraints

◼ qdb folder

 Contains compiled design information

◼ output_files folder (customize location/name in project settings)

 Generated compilation report files

 Programming files generated by the Assembler

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html
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Constraint Files & Assignment Priority

◼ Settings File (.qsf)

 Highest priority

 Assignments always used from here first

◼ Revision-specific .qdf file located in project directory

 <revision_name>_assignment_defaults.qdf

 Created automatically in the project directory when a revision is opened 

in another version of Quartus Prime software

◼ .qdf located in project directory

 assignment_defaults.qdf

 Created automatically in project directory when project archived & restored

◼ .qdf located in Intel Quartus Prime Design Software bin64 directory

 Lowest priority

 Assignments only used if not found in higher priority files

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html
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Project Archive & Restore

◼ Archive Creates 2 files

 Compressed Quartus Prime Design Software Archive File (.qar)

◼ Includes design files, .qpf file, & .qsf file(s)

◼ Option to include databases

◼ Creates local .qdf file for archive

 Archive activity log (.qarlog)

◼ Restore decompresses .qar into specified directory

◼ Paths/directory structures to referenced files/libraries outside project directory must also be restored

 Recreated in restore location based on nearest common parent directory

 Example of referenced file paths in restored project destination:

◼ <destination folder>/drive/C/<entire path to all files in project directory>

◼ <destination folder>/drive/H/<path to file(s) referenced on original H drive>

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

Tcl: project_archive <project_name>

Tcl: project_restore <archive_file>
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Design entry methods

◼ Quartus Prime design entry

 Text editor

◼ VHDL

◼ Verilog or SystemVerilog

 Schematic editor

◼ Block Diagram File

 System editor

◼ Platform Designer

 State machine editor

◼ HDL from state machine file

 Memory editor

◼ HEX

◼ MIF

◼ 3rd-party EDA tools

 EDIF 2 0 0

 Verilog software Mapping (.vqm)

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html
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Schematic Editor

◼ Full-featured schematic design capability

◼ Schematic Editor uses

 Create simple test designs to understand the functionality of an Intel FPGA IP: 

PLL, LVDS I/O, memory, etc…

 Create top-level schematic for easy viewing & connection

 Convert between schematic .bdf, block symbol .bsf, and HDL files

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html
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State Machine Editor

◼ Create state machines in GUI

 Manually by adding individual states,

transitions, and output actions

 Automatically with State Machine Wizard

(Tools menu & toolbar)

◼ Generate state machine HDL code

 VHDL, Verilog, SystemVerilog

 Automatically added to project

 Required for use

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

from .smf

to HDL
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Intel MAX10 Design Flow

source: https://www.intel.com/content/www/us/en/docs/programmable/683196/current/fpga-design-guidelines-34288.html
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Synthesis

◼ Translates HDL source files into an atom netlist

◼ Generates an advanced hierarchical database

Design compilation

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

Analysis &
Elaboration

Synthesis

Fitter

Assembler

Timing Analysis

EDA Netlist Writer

Finctional/RTL 
Simulation

Constrains & 
settings

Design
Files

Gate-level
Simulation

Finctional netlist

Programming & 
configuration files

Post-fit 
simulation files

Analysis &
Elaboration

Synthesis

Logic 
cells

netlist

Verilog
(.v .sv)

Schematic

(.bdf)
VHDL
(.vhd)

AHDL
(.tdf)

3rd party
(.vqm)

DFFs

I/O ports

RAM

DSP

Wires/Nets
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Design compilation - Fitter

◼ Advanced place & route engine for finding a valid “solution” 

in a “reasonable” amount of time

◼ Consists of 4 stages

 Plan

◼ Periphery (I/O) placement and routing, clock resource

selection

 Early Place

◼ Early assignment of core logic to device resources

◼ More pessimistic results within 20% of final routed

results

 Place

◼ Core resource placement (logic elements, registers, 

DSP, RAM)

 Route

◼ Core routing connections made

 Finalize

◼ Post-routing optimizations

◼ Stages can be all run or individually

 End of running each stage referred to as a checkpoint (CP)

◼ Prior stages must be complete before running later stages

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

Plan

Finalyze

Post-fit 
netlist

Post-synth 
netlist

Post-plan CP

Early Place

Place

Route

Post-early plan CP

Post-place CP

Post-route CP
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Compilation Results

◼ Quartus Prime Design Software graphical tools available for

 Understanding design processing

 Verifying correct design results

 Debugging incorrect results

◼ Compilation Report

◼ Viewers

 RTL Viewer

 Technology Map Viewer

 State Machine Viewer

◼ Chip Planner

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html
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Compilation Results

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

◼ Compilation Report: contains all compilation processing information

 Resource usage

 Device pin-out

 Settings and constraints applied

 Messages

◼ Recommendation: Go through report for a design 

to get sense of information being provided

◼ Information also available as text files 

in output_files folder in project directory: 

<revision_name>.syn.rpt, <revision_name>.fit.rpt, 
<revision_name>.fit.plan.rpt, etc.

◼ Access from Processing menu, toolbar, 

or Compilation Dashboard

◼ Each compiler process generates separate folder

Compilation Report GUI
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Example: Compilation Results - Resources

◼ Synthesis resource usage: estimates of FPGA resources required to implement design

◼ Fitter resource usage: detailed information on all resources used by design for each stage

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html
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Netlist Viewers

◼ RTL Viewer

 Schematic of design after Analysis & Elaboration

 Visually check initial HDL before synthesis optimizations

 Locate synthesized nodes for assigning constraints

 Debug verification issues

◼ Technology Map Viewers (Post-Mapping or Post-Fitting)

 Graphically represents results of mapping (post-synthesis) & fitting

 Analyze critical timing paths graphically

 Locate nodes & node names after optimizations (cross-probing)

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html
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Netlist Viewers

◼ RTL Viewer - represents design using logic blocks & nets

 I/O pins

 Registers

 Muxes

 Gates (AND, OR, etc.)

 Operators 

(adders, multipliers, etc.)

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html
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Netlist Viewers

◼ Technology Map Viewers - represents design using atoms

 I/O pins & cells

 Logic cells (Lcells)

 Memory blocks

 MAC (DSP blocks)

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html
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State Machine Viewer

◼ Tools menu → Netlist Viewers

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

Highlighting state in state transition table 

highlights corresponding state in state flow diagram

State Flow 

Diagram

Use drop-down to select from

multiple state machines 

View transitions 

and encoding


