
•1101010001010100100100010110101010100100100

10011110100010010101011010101011100010100010

10010001110011101000000111100100010101001001

00000101001010010100100100100010001000100001

00011110101000101010010010001011010101010010

01001001111010001001010101101010101110001010

00101001000111001110100000011110010001010100

10010000010100101001010010010010001000100010

00010001111010100010101001001000101101010101

00100100100111101000100101010110101010111000

10100010100100011100111010000001111001000101

01001001000001010010100101001001001000100010

00100001000111101010001010100100100010110101

01010010010010011110100010010101011010101011

10001010001010010001110011101000000111100100

01010100100100000101001010010100100100100111

10100010010101011010101011100010100010100100

01110011101000000111100100010101001001000001

01001010010100100100100010001000100001000111

10101000101010010010001011010101010010010010

01111010001001010101101010101110001010001010

01000111001110100000011110010001010100100100

00010100100011100111010000001111001000101010

01001000001010010100101001001001000100010001

00001000111101010001010100100100010110101010

10010010010011110100010010101011010101011100

01010001010010001110011101000000111100100010

10100100100000101001010010100100100100010001

00010000100011110101000101010010010001011010

10101001001001001111010001001010101101010101

11000101000101001000111001110100000011110010

00101010010010000010100101001010010010010001

00010001000010001111010100010101001001000101

10101010100100100100111101000100101010110101

01011100010100010100100011100111010000001111

00100010101001001000001010010100101001001001

00111101000100101010110101010111000101000101

00100011100111010000001111001000101010010010

00001010010100101001001001000100010001000010

00111101010001010100100100010110101010100100

10010011110100010010101011010101011100010100

01010010001110011101000000111100100010101001

00100000101001000111001110100000011110010001

01010010010000010100101001010010010010001000

10001000010001111010100010101001001000101101

01010100100100100111101000100101010110101010

11100010100010100100011100111010000001111001

00010101001001000001010010100101001001001000

10001000100001000111101010001010100100100010

Digital Logic 

Design with FPGA
Design Flow with Quartus

Simulation & HW Debug



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Outline

◼ Modeling digital systems

◼ Simulation in typical design flow

 Simulation tools

 Timing simulation

◼ Hardware debug

 In-System Sources and Probes (ISSP)

 Signal Tap Internal Analyzer



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Modeling Digital Systems

◼ Simulation and modeling at the system level
 performance analysis

◼ Behavior specification at the algorithmic level
 preliminary functional verification of algorithms

 division into hardware and software

 high-level synthesis

◼ Simulation behavioral models of standard elements

◼ Functional simulations at the system/package level
 full

 bus

◼ Synthesizable models at the RTL (register transfer level)
 full functional specification of the project

◼ Model of the system environment (testbench)

◼ Simulation models of library cells from integrated circuit manufacturers (VITAL standard) –
 time verification of ASIC/FPGA systems



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 

Gate-level

Model

T
e

s
t

 
b

e
n

c
h

Timing

Model

Simulate

Synthesize

Simulate

Place & Route

Simulate

Project

Requirements

Hardware

Platform

Behavioral

Model

Simulation in typical design flow



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Simulation

◼ Provide results that are impossible to measure in HW prototype

◼ Include wide range of analyses

◼ Reduce development costs

◼ Minimize time-to-market

◼ Delivering visibility of all signals in design

…

◼ Designer has to create stimulus that matches device behavior

◼ Can take very long time to run for large designs

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
HDL Testbench

◼ Testbench is a specific design unit described in HDL

◼ It has no ports and is intended to simulate the designed 

device (UUT)

◼ Defines forces (stimuli) and how to interpret simulation 

results

◼ Creating a testbench:

 written "by hand" by the designer

 generated automatically using graphic editors 

based on the description of UUT ports

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

Test Bench

Stimuli
UUT 

(Unit Under Test)

waveformfile file

Response 
Analysis



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
HDL Testbench

Entity without I/O

Stimulus definition

Stimulus run

UUT instantiation



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Questa Overview

source: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/fpga-development-tools-support.html

◼ Multi-language HDL simulation environment

◼ It can be used independently or Quartus can create startup scripts

◼ Two versions of the Questa* Intel FPGA simulator available:

 Questa* Intel® FPGA Edition

◼ Licenses are required and must be purchased

◼ 2-6X slower than Questa Core

 Questa* Intel® FPGA Starter Edition

◼ Licenses are required but are free

◼ 40% slower than paid edition

◼ Both the free and paid editions require licenses for performing 

elaboration and simulation, but not for compilation



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Questa Overview

FSM 

View

Command/Transcript 

Window

Waveforms

View

Dataflow 

View

Simulation 

Structure

Simulation 

Objects



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Questa Simulation Types

source: https://www.intel.com/content/www/us/en/docs/programmable/730191/24-1/supported-simulation-types.html

Note: The Quartus Prime software supports post-fit functional simulation, but does not support post-fit timing simulation.

Simulation

Type
Description Occurs

RTL

Simulation of an RTL design consisting of one or more RTL files. The RTL files can instantiate low level 

blocks, such as primitives, basic IP functions, and ATOMs. Can perform 

before synthesis

Post-Synthesis

(Gate-Level)

The Quartus EDA Netlist Writer tool generates the post-synthesis netlist. The post-synthesis netlist is 

a netlist of low level blocks called ATOMs. The post-synthesis netlist is a purely functional netlist. Must perform 

after synthesis

Post-Fit 

(Gate-Level)

The Quartus EDA Netlist Writer can generate a Verilog HDL or VHDL gate-level netlist after the Fitter 

stage completes (post-fit netlist). The post-fit netlist is a netlist of ATOMs that the Fitter placed 

and routed on the FPGA device. The post-fit netlist is a purely functional netlist.

Note: The post-fit netlist includes chip locations of ATOM instances in commented lines. 

The post-synthesis netlist does not include this data.

Must perform 

after fitting



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
In-System Sources and Probes (ISSP)

source: https://www.intel.com/content/www/us/en/docs/programmable/683552/18-1/hardware-and-software-requirements-46738.html

◼ Hardware and Software Requirements

 Intel Quartus Prime Lite Edition

 Download Cable (USB-Blaster download cable or ByteBlaster cable)

 Intel FPGA development kit or user design board with a JTAG connection to device under test

◼ The In-System Sources and Probes Editor supports the following device families:

 Arria series

 Stratix series

 Cyclone series

 MAX series

✓ Quickly set signal to constants: pins or internal nodes

✓ Easily monitor signals (no-triggered continuous display)

✓ Works on actual hardware

Not-triggered – might miss activity!



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
ISSP

source: https://www.intel.com/content/www/us/en/docs/programmable/683552/18-1/design-debugging-using-in-system-sources-45607.html

ISSP block diagram

The ISSP system consists of the ALTSOURCE_PROBE IP core and an interface to control 

the ALTSOURCE_PROBE IP core instances during run time

◼ ISSP Editor consists of a probe function and interface 

to control the instances during run-time

◼ Allows an easy way to drive and sample signals in hardware

◼ Operates over JTAG

◼ Each ISSP instance can view/probe up to 512 signals

◼ Each ISSP instance can drive/source up to 512 signals



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
ISSP

source: https://www.intel.com/content/www/us/en/docs/programmable/683552/18-1/design-debugging-using-in-system-sources-45607.html

Using In-System Sources and Probes

◼ Create ISSP IP instance using the IP Parameter Editor

◼ Instantiate in design and compile project

◼ Program target device

◼ Create and use ISSP Editor (.spf file) to control sources and probes

ISSP IP core setup



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
ISSP

source: https://www.intel.com/content/www/us/en/docs/programmable/683552/18-1/design-debugging-using-in-system-sources-45607.html

Using In-System Sources and Probes

◼ Create ISSP IP instance using the IP Parameter Editor

◼ Instantiate in design and compile project

◼ Program target device

◼ Create and use ISSP Editor (.spf file) to control sources and probes

ISSP IP core



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
ISSP

source: https://www.intel.com/content/www/us/en/docs/programmable/683552/18-1/design-debugging-using-in-system-sources-45607.html

Using In-System Sources and Probes

◼ Create ISSP IP instance using the IP Parameter Editor

◼ Instantiate in design and compile project

◼ Program target device

◼ Create and use ISSP Editor (.spf file) 

to control sources and probes

JTAG setup & 

programming

Live Waveforms 

View

Probes/

sources

ISSP 

manager



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Signal Tap

source: https://www.intel.com/content/www/us/en/docs/programmable/683552/18-1/design-debugging-with-the-logic-analyzer-69524.html

The Signal Tap Logic Analyzer captures and displays real-time signal behavior in an FPGA design 

using a defined clock signal

✓ Easily monitor signals – using simple to elaborate triggering schemes

✓ No external equipment required

✓ Don’t need to figure out stimulus since its based on actual hardware

 Uses up lots of memory resources inside the FPGA

 Can change timing of design

 Requires recompile witch takes time



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Signal Tap

source: https://www.intel.com/content/www/us/en/docs/programmable/683552/18-1/design-debugging-with-the-logic-analyzer-69524.html

◼ Hardware and Software Requirements

 Signal Tap Logic Analyzer (following software includes the Signal Tap):

◼ Intel Quartus Prime Design Software

◼ Intel Quartus Prime Lite Edition

◼ Alternatively, use the Signal Tap standalone software and standalone Programmer software

 Download Cable (USB-Blaster download cable or ByteBlaster cable)

 Intel FPGA development kit or user design board with a JTAG connection to device under test

Note: During data acquisition, the memory blocks in the device store the captured data, and then transfer the 

data to the logic analyzer over a JTAG communication cable.

Opening the Standalone Signal Tap Logic Analyzer GUI

quartus_stpw <stp_file.stp>



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 

◼ System-level debug

◼ Can store large quantities of data

◼ Flexible trigger condition

Signal Tap LA vs. External LA

source: https://www.intel.com/content/www/us/en/docs/programmable/683552/18-1/design-debugging-with-the-logic-analyzer-69524.html

◼ Tap signals buried deep in the design

◼ No unassigned I/Os or routing needed

◼ Comes free with Quartus

◼ No external test equipment needed

◼ Tap new signals with the same board by recompiling, 

reprograming (no re-spin!)



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Signal Tap

source: https://www.intel.com/content/www/us/en/docs/programmable/683552/18-1/design-debugging-with-the-logic-analyzer-69524.html

◼ Create Signal Tap instance

 Use Signal Tap file (.stp)

◼ Creates a file separate from design files

◼ Convenient features and GUI

 Use IP Catalog

◼ Manually instantiate IP core directly into HDL code

◼ Ties the ELA to the signals directly in RTL



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Signal Tap

source: https://www.intel.com/content/www/us/en/docs/programmable/683552/18-1/design-debugging-with-the-logic-analyzer-69524.html

◼ Instance Manager

 Identifies which instance is being edited in the GUI

 Enable/disable instances quickly

 Gives status and resource utilization



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Signal Tap

source: https://www.intel.com/content/www/us/en/docs/programmable/683552/18-1/design-debugging-with-the-logic-analyzer-69524.html

◼ JTAG Chain Configuration

 Graphical setup for JTAG

 Buit-in Programmer

 Scans the JTAG chain and identifies available devices



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Signal Tap

source: https://www.intel.com/content/www/us/en/docs/programmable/683552/18-1/design-debugging-with-the-logic-analyzer-69524.html

◼ Nodes List

 Use the Node Finder to add signals to be tapped

 Automatically groups busses together and create custom groups

Node Finder



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Signal Tap

source: https://www.intel.com/content/www/us/en/docs/programmable/683552/18-1/design-debugging-with-the-logic-analyzer-69524.html

◼ Trigger Conditions and Qualifiers

 Data Enable: saves signal data (disable to save memory)

 Trigger Enable: signal is part of the trigger condition (disable to save LEs)



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Signal Tap

source: https://www.intel.com/content/www/us/en/docs/programmable/683552/18-1/design-debugging-with-the-logic-analyzer-69524.html

◼ Trigger Conditions

 Add up to 10 trigger conditions

 Choose how every node is compared

 Choose what action triggers a specific node



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Signal Tap

source: https://www.intel.com/content/www/us/en/docs/programmable/683552/18-1/design-debugging-with-the-logic-analyzer-69524.html

◼ Signal Configuration

 Advanced trigger control

 Select the number of trigger conditions

 Trigger In/Out options



D
ig

it
a

l 
L

o
g

ic
 D

e
s
ig

n
 w

it
h

 F
P

G
A

 
Signal Tap

source: https://www.intel.com/content/www/us/en/docs/programmable/683552/18-1/design-debugging-with-the-logic-analyzer-69524.html

◼ Data/Setup Window

 Setup allows configuration of nodes and trigger condition

 Data shows the acquired signal information


