
M.Kropidłowski – v.2.0.b 1/7

Custom
Computing &
Embedded Systems

FSM debug and implementation

1. Thematic scope of the exercise:

- simulation using VHDL testbench,

- methods of describing FSM finite machines,

- synthesis of automata from the VHDL description.

2. Methods of modeling finite state machines in VHDL

Most synthesis tools include special templates designed to describe finite state machines (FSMs).

The basic way to describe an FSM in VHDL is to use the process statement. Below are

examples of machine construction using a 1-, 2- and 3-process template [2].

Fig.1. State diagram of the analyzed machine.

Code 1. 1-process description [2]

entity fsm_1 is

 port (clk, reset, x1 : IN std_logic;

 outp : OUT std_logic);

end entity;

architecture beh1 of fsm_1 is

 type state_type is (s1,s2,s3,s4);

 signal state: state_type;

begin

 process (clk,reset)

 begin

 if (reset ='1') then

 state <=s1;

 outp<='1';

 elsif rising_edge(clk) then

 case state is

 when s1 =>

RESET

x1='1' x1='0'

S2
outp='1'

S1
outp='1'

S3
outp='0'

S4
outp='0'

M.Kropidłowski – v.2.0.b 2/7

 if x1='1' then

 state <= s2; outp <= '1';

 else

 state <= s3; outp <= '0';

 end if;

 when s2 =>

 state <= s4; outp <= '0';

 when s3 =>

 state <= s4; outp <= '0';

 when s4 =>

 state <= s1; outp <= '1';

 end case;

 end if;

 end process;

end beh1;

Code 2. 2-process description

entity fsm_2 is

 port (clk, reset, x1 : IN std_logic;

 outp : OUT std_logic);

end entity;

architecture beh1 of fsm_2 is

 type state_type is (s1,s2,s3,s4);

 signal c_state, n_state: state_type;

begin

 proc_fsm: process(c_state, x1) begin

 outp <= '0';

 case c_state is

 when s1 =>

 outp <= '1';

 if x1='1' then

 n_state <= s2;

 else

 n_state <= s3;

 end if;

 when s2 =>

 outp <= '1';

 n_state <= s4;

 when s3 =>

 n_state <= s4;

 when s4 =>

 n_state <= s1;

 end case;

 end process;

 proc_memory: process (clk,reset)

 begin

 if (reset ='1') then

 c_state <= s1;

 elsif rising_edge(clk) then

 c_state <= n_state;

 end if;

 end process;

end beh1;

Code 3. 3-process description

entity fsm_3 is

 port (clk, reset, x1 : IN std_logic;

 outp : OUT std_logic);

end entity;

architecture beh1 of fsm_3 is

 type state_type is (s1,s2,s3,s4);

 signal c_state, n_state: state_type;

begin

M.Kropidłowski – v.2.0.b 3/7

 proc_fsm: process(c_state, x1) begin

 case c_state is

 when s1 =>

 if x1='1' then

 n_state <= s2;

 else

 n_state <= s3;

 end if;

 when s2 =>

 n_state <= s4;

 when s3 =>

 n_state <= s4;

 when s4 =>

 n_state <= s1;

 end case;

 end process;

 proc_outs : process (c_state)

 begin

 case c_state is

 when s1 => outp <= '1';

 when s2 => outp <= '1';

 when s3 => outp <= '0';

 when s4 => outp <= '0';

 end case;

 end process;

 proc_memory: process (clk,reset)

 begin

 if (reset ='1') then

 c_state <= s1;

 elsif rising_edge(clk) then

 c_state <= n_state;

 end if;

 end process;

end beh1;

Note the use of the enumerated type to define the states of the machine. This approach facilitates

testing of different types of state encodings at the synthesis and implementation stages. I

recommend using the description from Code 2. It allows a clear separation between the

combinational part (proc_fsm) and the sequential part (proc_memory). The sensitivity list in

proc_fsm contains all signals on the right side of the expressions. All signals set in the process

have a defined default value (outp <= '0' after process begin). This guarantees that the

synthesis will not produce latches that have an adverse effect on the operation of the device. The

second process in Code 2 describes all the operations that are to be edge-dependent on the clock

signal.

3. Automation simulation

[!] Create a new Questa simulator project and add . vhd from the course server

[!] Compile from the command line with the command:
 vcom –2008 –autoorder –fsmdebug -fsmverbose *.vhd

 Check the meaning of the fsmdebug and fsmverbose in the simulator manual [1]

 Run the testbench simulation with the command:
 vsim –voptargs=+acc –fsmdebug work.fsm_2_tb

Note: in analyzing the operation of the system, you can use the graphical presentation of the

machine (FSM View window). All FSMs detected in the current simulation can be accessed via

the View menu -> FSM List .

M.Kropidłowski – v.2.0.b 4/7

Fig.2. FSM View .

[!] Analyze how the stimuli are defined in the fsm_2_tb.vhd file

What changes should be made to the testbench code to test the system's double reset during

the first 200ns of operation? For this purpose, use the procedures from the pkg_symuli.

4. Designing a FSM

The project defined sources for building a simple frequency meter (Fig. 3).

Fig.3. simple_f_meter

The measurement with this meter is based on counting the pulses of the signal measured per unit

of time. The counting time is determined by the time base generator (time_base_counter).

In the discussed case, it is a 7-decade parallel counter - it determines the time equal to 1sec based

on the clock clk_10M=10MHz. After 1sec, we receive the signal frequency f_in expressed in

Hertz at the output of the freq_counter. Then the result is written to the reg[23..0] register, the

counters are cleared and the next measurement cycle begins. The operation of the meter is

M.Kropidłowski – v.2.0.b 5/7

managed by a simple automaton responsible for generating the appropriate sequence of control

signals.

Fig.4. State diagram of the simple_fsm control machine

[!] Compile from the command line with the command:
 vcom –2008 –autoorder –fsmdebug -fsmverbose *.vhd

[!] Run a simulation of a few seconds of frequency meter operation with the command:
 vsim –t 1ps –fsmdebug work.simple_f_meter_tb

Analyze the operation of the control machine using the generated state diagram - View

menu -> FSM List -> View FSM

[!] Prepare a frequency meter for implementation on the DE10-Lite prototype board. Take

the measured signal from GPIO(0), the reset signal from KEY(0).

Task A

Design a multi-range frequency meter according to the following assumptions:

1. Presentation of the result on 4 digits of a 7-segment display

2. Controlling the position of the decimal point of the displays to increase the accuracy of the

displayed measurement result

3. Presentation of the measurement range on two characters of a 7-segment display

4. Automatic change of the measurement range

[!] In connection with assumption 4, create a new model of the meter control machine enabling

automatic range change.

[!] Prepare a testbench for meter simulation with automatic change of measurement range.

The testbench should examine the range change up and down and report the input and

measured frequency value.

[!] Prepare the simulation compilation/configuration macro.

[!] Perform gate-level simulation using the prepared testbench .

- Hz, - kilo Hz, - mega Hz

M.Kropidłowski – v.2.0.b 6/7

Task B

Make a model of the machine controlling the settings of the multi-

decade counter (see Fig.5). The system is controlled using five

monostable buttons as shown in the figure below. By default (after

turning on the power and after activating rst), the control system

is in the idle state (IDLE). The executive system (counter

Cntr_Nbcd_load from Fig.6) after triggering (right) is

incremented until the end of counting is reached. The executive

system can be paused or reset after using the appropriate buttons

(left, down). In the edit mode (after pressing center), you can

define a new value of the end of counting for the actuator using the up, down, left, right

buttons and confirm by pressing center again. When exiting the edit mode, new settings may

be abandoned (RETURN →IDLE) or values may be loaded into the executive system (via the

LOAD state). In addition to editing, content can be forced to reload with the up button.

EDIT

IDLE

LOAD

INC val

DEC val

CENTER

INC pos

DEC pos

RIGHT

RESET
STOP

START

UP

RETURN

CENTER

Fig.5. State diagram of the key_fsm machine.

Notes: the output settings are not marked in the diagram fig.5 - this is a part to be developed by

the designer. Actions taken in the RESET state concern deleting the actuator system, not the

control system.

For design purposes, we assume that the input control signals (left, right, up, down,

center) last exactly one period of the clock (clk). Transitions not described in the diagram are

performed unconditionally (under the influence of the rising edge of the clock). When the device

is started, the counter (executive system) does not count - it starts the first counting after receiving

M.Kropidłowski – v.2.0.b 7/7

a command from the control machine (right). In the EDIT mode, the executive system (counter)

is blocked (this means that the ce input of the counter is disabled);

Interface of the designed device key_fsm :

data_out : output BCD-coded, can be parameterized by the number of counter digits;

cntr_en : ce signal output for bcd counter;

cntr_rst : clear signal output for bcd counter;

cntr_load : load signal output for bcd counter;

edit_en_out : an output indicating that the machine is in edit mode (in a later

implementation it can be used as a display switching signal);

Requirements for task B

[!] design an automaton controlling an 8-decade counter

[!] prepare simulation macro ;

[!] simulate the prepared architecture using testbench key_fsm_tb ;

[!] perform "gate-level" simulation

Clk

F_out

Clk

BTN

Clk_10MHz

Cntr_out

Rst

(31:0)

Edit flag

Left Right Up Down Center

Key_FSM

BTNs

Rst

data_out

cntr_load

cntr_en
cntr_rst

edit_en_out
CLK

Cntr_Nbcd_load

DIN

Load

CE
RST

CLK

Q

CEO

Fig.6. Key_FSM machine with executive system (Cntr_Nbcd_load).

[1] Siemens EDA, Questa® SIM Command Reference Manual Including Support for Questa

Base, Software Version 2023.3, Document Revision 8.3, © 2023 Siemens.

[2] Synthesis and Simulation Design Guide, ISE Version 9.2i, Xilinx Corporation 2007.

