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FSM debug and implementation 
 

 

1. Thematic scope of the exercise: 

- simulation using VHDL testbench, 

- methods of describing FSM finite machines, 

- synthesis of automata from the VHDL description. 

 

2. Methods of modeling finite state machines in VHDL 

Most synthesis tools include special templates designed to describe finite state machines (FSMs). 

The basic way to describe an FSM in VHDL is to use the process statement. Below are 

examples of machine construction using a 1-, 2- and 3-process template [2]. 

 

 
Fig.1. State diagram of the analyzed machine. 

 

Code 1. 1-process description [2] 
 
entity fsm_1 is 

    port ( clk, reset, x1 : IN std_logic; 

           outp           : OUT std_logic); 

end entity; 

 

architecture beh1 of fsm_1 is 

    type state_type is (s1,s2,s3,s4); 

    signal state: state_type; 

begin 

 

    process (clk,reset) 

    begin 

        if (reset ='1') then 

            state <=s1;  

            outp<='1'; 

        elsif rising_edge(clk) then 

            case state is 

                when s1 => 
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                    if x1='1' then  

                        state <= s2; outp <= '1'; 

                    else 

                        state <= s3; outp <= '0'; 

                    end if; 

                when s2 =>  

                    state <= s4; outp <= '0'; 

                when s3 =>  

                    state <= s4; outp <= '0'; 

                when s4 =>  

                    state <= s1; outp <= '1'; 

            end case; 

        end if; 

    end process; 

end beh1; 

 

Code 2. 2-process description 
 

entity fsm_2 is 

    port ( clk, reset, x1 : IN std_logic; 

           outp           : OUT std_logic); 

end entity; 

 

architecture beh1 of fsm_2 is 

    type state_type is (s1,s2,s3,s4); 

    signal c_state, n_state: state_type; 

begin 

    proc_fsm: process(c_state, x1) begin 

            outp <= '0'; 

            case c_state is 

                when s1 =>   

                    outp <= '1'; 

                    if x1='1' then  

                        n_state <= s2; 

                    else 

                        n_state <= s3; 

                    end if; 

                when s2 =>  

                    outp <= '1'; 

                    n_state <= s4; 

                when s3 =>  

                    n_state <= s4; 

                when s4 =>  

                    n_state <= s1; 

            end case; 

    end process; 

 

    proc_memory: process (clk,reset) 

    begin 

        if (reset ='1') then  

            c_state <= s1; 

        elsif rising_edge(clk) then 

            c_state <= n_state; 

        end if; 

    end process; 

end beh1; 

 

 

Code 3. 3-process description 
 

entity fsm_3 is 

    port ( clk, reset, x1 : IN std_logic; 

           outp           : OUT std_logic); 

end entity; 

 

architecture beh1 of fsm_3 is 

    type state_type is (s1,s2,s3,s4); 

    signal c_state, n_state: state_type; 

begin 
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    proc_fsm: process(c_state, x1) begin 

            case c_state is 

                when s1 =>   

                    if x1='1' then  

                        n_state <= s2; 

                    else 

                        n_state <= s3; 

                    end if; 

                when s2 =>  

                    n_state <= s4; 

                when s3 =>  

                    n_state <= s4; 

                when s4 =>  

                    n_state <= s1; 

            end case; 

    end process; 

 

    proc_outs : process (c_state) 

    begin 

        case c_state is 

            when s1 => outp <= '1'; 

            when s2 => outp <= '1'; 

            when s3 => outp <= '0'; 

            when s4 => outp <= '0'; 

        end case; 

    end process; 

 

    proc_memory: process (clk,reset) 

    begin 

        if (reset ='1') then  

            c_state <= s1; 

        elsif rising_edge(clk) then 

            c_state <= n_state; 

        end if; 

    end process; 

end beh1; 

 

Note the use of the enumerated type to define the states of the machine. This approach facilitates 

testing of different types of state encodings at the synthesis and implementation stages. I 

recommend using the description from Code 2. It allows a clear separation between the 

combinational part ( proc_fsm ) and the sequential part ( proc_memory ). The sensitivity list in 

proc_fsm contains all signals on the right side of the expressions. All signals set in the process 

have a defined default value ( outp <= '0' after process begin). This guarantees that the 

synthesis will not produce latches that have an adverse effect on the operation of the device. The 

second process in Code 2 describes all the operations that are to be edge-dependent on the clock 

signal. 

 

3. Automation simulation 

 

[!]  Create a new Questa simulator project and add . vhd from the course server  

[!]  Compile from the command line with the command: 
  vcom –2008 –autoorder –fsmdebug -fsmverbose *.vhd 

 

 Check the meaning of the fsmdebug and fsmverbose in the simulator manual [1] 

 Run the testbench simulation with the command: 
  vsim –voptargs=+acc –fsmdebug work.fsm_2_tb 

  

Note: in analyzing the operation of the system, you can use the graphical presentation of the 

machine (FSM View window). All FSMs detected in the current simulation can be accessed via 

the View menu -> FSM List . 
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Fig.2. FSM View . 

 

[!]  Analyze how the stimuli are defined in the fsm_2_tb.vhd file  

What changes should be made to the testbench code to test the system's double reset during 

the first 200ns of operation? For this purpose, use the procedures from the pkg_symuli. 

 

 

4. Designing a FSM 

 

The project defined sources for building a simple frequency meter (Fig. 3). 

Fig.3. simple_f_meter 

 

The measurement with this meter is based on counting the pulses of the signal measured per unit 

of time. The counting time is determined by the time base generator ( time_base_counter ).  

In the discussed case, it is a 7-decade parallel counter - it determines the time equal to 1sec based 

on the clock clk_10M=10MHz. After 1sec, we receive the signal frequency f_in expressed in 

Hertz at the output of the freq_counter. Then the result is written to the reg[23..0] register, the 

counters are cleared and the next measurement cycle begins. The operation of the meter is 
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managed by a simple automaton responsible for generating the appropriate sequence of control 

signals. 

 

 
Fig.4. State diagram of the simple_fsm control machine 

 

[!]  Compile from the command line with the command: 
  vcom –2008 –autoorder –fsmdebug -fsmverbose *.vhd 

 

[!]  Run a simulation of a few seconds of frequency meter operation with the command: 
  vsim –t 1ps –fsmdebug work.simple_f_meter_tb 
 

Analyze the operation of the control machine using the generated state diagram - View 

menu -> FSM List -> View FSM 
 

[!]  Prepare a frequency meter for implementation on the DE10-Lite prototype board. Take  

the measured signal from GPIO(0), the reset signal from KEY(0). 
 

 

Task A 
 

Design a multi-range frequency meter according to the following assumptions: 
 

1. Presentation of the result on 4 digits of a 7-segment display 

2. Controlling the position of the decimal point of the displays to increase the accuracy of the 

displayed measurement result 

3. Presentation of the measurement range on two characters of a 7-segment display 

 

 

4. Automatic change of the measurement range 
 

[!] In connection with assumption 4, create a new model of the meter control machine enabling 

automatic range change.  

[!] Prepare a testbench for meter simulation with automatic change of measurement range.  

The testbench should examine the range change up and down and report the input and 

measured frequency value. 

[!] Prepare the simulation compilation/configuration macro. 

[!] Perform gate-level simulation using the prepared testbench . 

- Hz, - kilo Hz, - mega Hz 
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Task B 

 

Make a model of the machine controlling the settings of the multi-

decade counter (see Fig.5). The system is controlled using five 

monostable buttons as shown in the figure below. By default (after 

turning on the power and after activating rst), the control system 

is in the idle state (IDLE). The executive system (counter 

Cntr_Nbcd_load from Fig.6) after triggering (right) is 

incremented until the end of counting is reached. The executive 

system can be paused or reset after using the appropriate buttons 

(left, down). In the edit mode (after pressing center), you can 

define a new value of the end of counting for the actuator using the up, down, left, right 

buttons and confirm by pressing center again. When exiting the edit mode, new settings may 

be abandoned (RETURN →IDLE) or values may be loaded into the executive system (via the 

LOAD state). In addition to editing, content can be forced to reload with the up button. 
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DEC pos
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RESET
STOP

START

UP

RETURN

CENTER

 
Fig.5. State diagram of the key_fsm machine. 

 

Notes: the output settings are not marked in the diagram fig.5 - this is a part to be developed by 

the designer. Actions taken in the RESET state concern deleting the actuator system, not the 

control system.  

For design purposes, we assume that the input control signals (left, right, up, down, 

center) last exactly one period of the clock (clk). Transitions not described in the diagram are 

performed unconditionally (under the influence of the rising edge of the clock). When the device 

is started, the counter (executive system) does not count - it starts the first counting after receiving 
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a command from the control machine (right). In the EDIT mode, the executive system (counter) 

is blocked (this means that the ce input of the counter is disabled); 

 

Interface of the designed device key_fsm : 

 
 

data_out :  output BCD-coded, can be parameterized by the number of counter digits; 

cntr_en :  ce signal output for bcd counter; 

cntr_rst :  clear signal output for bcd counter; 

cntr_load :  load signal output for bcd counter; 

edit_en_out : an output indicating that the machine is in edit mode (in a later 

implementation it can be used as a display switching signal); 

 

Requirements for task B 

[!] design an automaton controlling an 8-decade counter 

[!] prepare simulation macro ; 

[!] simulate the prepared architecture using testbench key_fsm_tb ; 

[!] perform "gate-level" simulation 
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Fig.6. Key_FSM machine with executive system ( Cntr_Nbcd_load ). 
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