
•1101010001010100100100010110101010100100100

10011110100010010101011010101011100010100010

10010001110011101000000111100100010101001001

00000101001010010100100100100010001000100001

00011110101000101010010010001011010101010010

01001001111010001001010101101010101110001010

00101001000111001110100000011110010001010100

10010000010100101001010010010010001000100010

00010001111010100010101001001000101101010101

00100100100111101000100101010110101010111000

10100010100100011100111010000001111001000101

01001001000001010010100101001001001000100010

00100001000111101010001010100100100010110101

01010010010010011110100010010101011010101011

10001010001010010001110011101000000111100100

01010100100100000101001010010100100100100111

10100010010101011010101011100010100010100100

01110011101000000111100100010101001001000001

01001010010100100100100010001000100001000111

10101000101010010010001011010101010010010010

01111010001001010101101010101110001010001010

01000111001110100000011110010001010100100100

00010100100011100111010000001111001000101010

01001000001010010100101001001001000100010001

00001000111101010001010100100100010110101010

10010010010011110100010010101011010101011100

01010001010010001110011101000000111100100010

10100100100000101001010010100100100100010001

00010000100011110101000101010010010001011010

10101001001001001111010001001010101101010101

11000101000101001000111001110100000011110010

00101010010010000010100101001010010010010001

00010001000010001111010100010101001001000101

10101010100100100100111101000100101010110101

01011100010100010100100011100111010000001111

00100010101001001000001010010100101001001001

00111101000100101010110101010111000101000101

00100011100111010000001111001000101010010010

00001010010100101001001001000100010001000010

00111101010001010100100100010110101010100100

10010011110100010010101011010101011100010100

01010010001110011101000000111100100010101001

00100000101001000111001110100000011110010001

01010010010000010100101001010010010010001000

10001000010001111010100010101001001000101101

01010100100100100111101000100101010110101010

11100010100010100100011100111010000001111001

00010101001001000001010010100101001001001000

Embedded Systems

Hardware Design
RTL implementation

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
RTL architecture

Register Transfer Level (RTL) description is a lower level of abstraction than behavioral

description but higher level abstraction than netlist description of a circuit design. As

shown in last section, RTL description is written using either Verilog or VHDL (using

any of their flavors). In RTL description, circuit is described in terms of registers (flip-

flops or latches) and the data is transferred between them using logical operations

(combinational logic, if needed) and that is why the nomenclature: Register Transfer

Level (RTL).

Source Principles of VLSI RTL Design a Practical Guide

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
4-bit counter with overflow

Example of RTL architecture is 4-bit counter presented below. As you can see between

each logic gate you can find JK Flip-Flop. The structure of this counter results from

the principle of its operation. The next slide shows the code describing the operation

of the counter in verilog using the RTL description.

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
RTL implementation

module counter(input clk,

output [3:0] q,

output p);

wire [3:0] q_tmp;

wire [1:0] y;

jk_ff jk0 (.j(1'b1),

.k(1'b1),

.clk(clk),

.q(q_tmp[0]));

jk_ff jk1 (.j(q_tmp[0]),

.k(q_tmp[0]),

.clk(clk),

.q(q_tmp[1]));

and_2 a0 (.a(q_tmp[0]),

.b(q_tmp[1]),

.y(y[0]));

jk_ff jk2 (.j(y[0]),

.k(y[0]),

.clk(clk),

.q(q_tmp[2]));

and_2 a1 (.a(y[0]),

.b(q_tmp[2]),

.y(y[1]));

jk_ff jk3 (.j(y[1]),

.k(y[1]),

.clk(clk),

.q(q_tmp[3]));

and_2 a2 (.a(y[1]),

.b(q_tmp[3]),

.y(p));

assign q=q_tmp;

endmodule

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
Behavioral implementation

module counter(input clk,

output [3:0] q,

output p);

reg [3:0] count;

always@(posedge clk)

begin

count <= count + 1;

end

assign q = count;

assign p = (count==15) ? 1'b1 : 1'b0;

endmodule

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
Testbench

module tb_counter;

reg clk;

wire [3:0]q;

wire p;

counter u0 (.clk(clk),

.q(q),

.p(p));

initial begin

$dumpfile("test.vcd");

$dumpvars;

clk = 1;

#320 $finish;

end

always #10 clk=~clk;always #20 $display("%d %d",p,q);

endmodule

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
Simulation

Compiling tb.v file:

verilator --trace --binary -j 0 tb.v

Running the simulation:

./obj_dir/Vtb

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
Results of the counter simulation
0 0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

0 10

0 11

0 12

0 13

0 14

1 15

- tb.v:16: Verilog $finish

0 0

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

0 10

0 11

0 12

0 13

0 14

1 15

- tb.v:16: Verilog $finish

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
Results of the counter simulation

The image below presents results of simulation in the time domain.

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
Pipelining

The idea behind pipelining is to take a large data-path operation that is currently executed over one

clock cycle and break it up into smaller operations that are executed over multiple shorter clock

cycles.

The image above shows how the pipelining looks like. In the first line of the image there is logical

block with with two registers. This block slows down the clock frequency for example to 500 MHz.

We assume that the operations in the middle block can be splitted into two blocks. This operation

should increase clock frequency for example to 1GHz.

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
Parallel computing

Assume that we want to implement Y = A + B + C + D function in FPGA.

The adder can be presented as block with 4 inputs and 1 output.

Making adder with 4 input could be difficult

to realize in FPGA. We can decomposite

function Y and present it as

Y=((A+B)+C)+D but it is still a sequential

calculations. There is other decomposition

Y=(A+B)+(C+D). (A+B) and (C+D) can be

performed in parallel.

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
Pipelined adder

In this way we can achieve a pipelined adder circuit.

The adder from the previous slide could add 4 signals in 1 clock’s cycle. The adder

presented below can do the same calculations in 2 cycles but it can do it with higher

clock’s frequency.

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
Application of RTL design

● GPU performs calculations on the data stream, pipelining is an excellent solution for

these types of applications. The use of pipelining and RTL architecture increases

GPU throughput by increasing the clock frequency

● NPU also performs computing on the data stream. Real-time applications like objects

recognition or object tracking require high throughput and a fast clock.

● CPU is specific case. It uses some instructions that use piplining but pipelining is

used used by the processor in instruction handling

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
Pipelining in CPU

In non-pipelined version of CPU, as you can see, the CPU is waiting to end

instruction before starting the next one.

Pipelined version doesn’t wait to end

of the last instruction.

It starts handle the instruction

after instruction in every cycle.

Source https://stackpointer.io/hardware/how-pipelining-improves-cpu-performance/113/

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
Pipelined adder

16 bit adder can be implemented with 4-bit adder based on slice.

This pipeline has 4 stages, so need

four cycles to give the result.

Source https://vlsigyan.com/pipeline-adder-verilog-code/

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
Advantages of RTL implementation

● Improves throughput

● Easy to verify

● Easy to debug

● Easy to understand

● Perfect for data streams

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
Disadvantages of RTL implementation

● Loss of initial clock cycles

● Requires algorithm/problem decomposition

● Pipelining is not suitable for single data

● More data paths in one block require synchronization

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
Synchronization

Look at the problem Y=A*B+C.

How to implement it using pipelining?

Because the operations are not independent, multiplication must be done first and then

addition. We cannot directly send C signal to adder because we don’t know the result

of multiplication. So signal C must be synchronized with the result of multiplication. It

can be done by adding additional register that will delay signal C in data path.

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
Increasing frequency

If there is more than one path in the design and one generates a pipeline and the other

does not, we can optimize the circuit. Assuming that one of these paths determines

the clock speed, you can divide the activities performed on this path into stages to

create a pipeline. It should increase clock frequency.

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
Avoiding mistakes

● Try to implement and keep digital blocks as small as posible

● Avoid behavioral architecture

● Use behavioral description to describe small blocks like MUXes, logic gates, etc. It

doesn’t make sense to describe them as logical equations

● Before you use pipelining, think about whether it is profitable. Otherwise, you may

waste unnecessary time.

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
Behavioral vs RTL synthesis

In some experiments behavioral design gives better synthesis results tha RTL design.

Source Comparing RTL and behavioral design methodologies in the case of a 2M-transistor ATM shaper

https://www.researchgate.net/publication/3810046_Comparing_RTL_and_behavioral_design_methodologies_in_the_case_of_a_2M-transistor_ATM_shaper?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
Project Simulation Phases

Depending upon the amount of design innovation in a new project, theemphasis on the

different simulation phases may vary, but generally they consist of

● debugging.

● regression.

● recreating hardware problems.

● To this set of usual simulation phases, we add simulation performance profiling

between the debugging and regression phases.

Source Principles of Verifiable RTL Design

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
Debugging Phase

As engineers begin their first simulations of their designs, simulations invariably fail to

pass their tests due to design bugs. The number of bugs is generally proportional to

the size of the simulated design and the amount ofinnovation applied in the new

design.

Source Principles of Verifiable RTL Design

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
Regression Phase

The regression simulation phase begins when a design passes nearly all of its tests.

During this phase, the project uses as much computing horsepower as it can find to

run as many different directed, directed random, and random simulations as it can on

all the possible configurations of the simulated model.

Source Principles of Verifiable RTL Design

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
Recreating Hardware Problems

An important application of RTL simulation is recreating design problems that show up in

the hardware lab testing. The first step is crafting the test that duplicates the

hardware problem in simulation. The next step is devising the logic change that fixes

the problem, then running the test to show that the problem is fixed for that test. The

test can then join the regression suite of tests.

Source Principles of Verifiable RTL Design

E
m

b
e

d
d

e
d
 S

y
s
te

m
s
 H

a
rd

w
a
re

 D
e
s
ig

n
Debugging and regression model differences

Source Principles of Verifiable RTL Design

